This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329787 #12 Apr 19 2025 06:16:17 %S A329787 22356,28212,31425,41332,47860,54324,57588,58077,62004,62644,63028, %T A329787 65908,77844,82484,86485,86828,89073,95992,97844,98132,99860,101876, %U A329787 105192,108729,109396,119604,122300,123860,129164,136628,138388,144212,144532,146452,150164,152212,153981,156244,161844 %N A329787 Discriminants of totally real cubic fields with 3 associated nonconjugate fields. %H A329787 Robin Visser, <a href="/A329787/b329787.txt">Table of n, a(n) for n = 1..1500</a> %H A329787 V. Ennola and R. Turunen, <a href="http://dx.doi.org/10.1090/S0025-5718-1985-0777281-8">On totally real cubic fields</a>, Math. Comp. 44 (1985), no. 170, 495-518. %e A329787 a(1) = 22356 as there are exactly three distinct totally real cubic fields all with discriminant 22356, namely Q[x]/(x^3 - 36*x - 60), Q[x]/(x^3 - 36*x - 78) and Q[x]/(x^3 - 18*x - 6). - _Robin Visser_, Apr 18 2025 %Y A329787 Cf. A329769, A329786, A269319. %K A329787 nonn %O A329787 1,1 %A A329787 _N. J. A. Sloane_, Nov 30 2019 %E A329787 More terms from _Robin Visser_, Apr 18 2025