A329804 Lexicographically earliest sequence of distinct positive integers such that the product a(n)*a(n+1) is "doubly true" (see the Comments section).
1, 2, 3, 10, 4, 16, 20, 5, 19, 30, 6, 21, 40, 7, 50, 8, 60, 9, 70, 11, 80, 12, 90, 13, 18, 38, 100, 14, 46, 105, 22, 61, 36, 103, 34, 106, 15, 93, 108, 25, 102, 35, 41, 29, 104, 26, 110, 17, 120, 23, 28, 109, 37, 130, 24, 72, 107, 43, 140, 27, 62, 31, 150, 32
Offset: 1
Examples
13*18 = 234 and (1*3)*(1*8) = 2*3*4 18*38 = 684 and (1*8)*(3*8) = 6*8*4 38*100 = 3800 and (3*8)*(1*0*0) = 3*8*0*0.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..35000 (first 10000 terms from Lars Blomberg)
- Rémy Sigrist, Scatterplot of the first 100000 terms.
- Rémy Sigrist, Scatterplot of (n, a(n)-n) for n = 1..500000.
Programs
-
PARI
dp(m) = vecprod(digits(m)) { s=0; u=v=1; for (n=1, 64, print1 (v", "); s+=2^v; while (bittest(s,u), u++); for (w=u, oo, if (!bittest(s,w) && dp(v)*dp(w)==dp(v*w), v=w; break))) } \\ Rémy Sigrist, Nov 21 2019
Extensions
Edited by N. J. A. Sloane, Dec 09 2019
Comments