A329814 The smallest base b where the sum of the digits for the number n in the base b is the smallest, with 1 < b < n and a(1) = a(2) = 1.
1, 1, 2, 2, 2, 2, 6, 2, 3, 2, 10, 2, 12, 7, 14, 2, 2, 2, 18, 2, 20, 11, 22, 2, 5, 5, 3, 3, 28, 3, 30, 2, 2, 2, 34, 6, 6, 19, 38, 2, 40, 6, 42, 22, 44, 23, 46, 2, 7, 5, 50, 26, 52, 3, 54, 7, 56, 29, 58, 30, 60, 31, 62, 2, 2, 2, 66, 2, 68, 35, 70, 2, 72, 37, 74
Offset: 1
Examples
For n = 5: n in base 2 = [1, 0, 1] -> digitSum(5, 2) = 2. n in base 3 = [1, 2] -> digitSum(5, 3) = 3. n in base 4 = [1, 1] -> digitSum(5, 4) = 2. Base 2 has the smallest sum of the digits for n = 5 -> therefore a(5) = 2. For n = 7: n in base 2 = [1, 1, 1] -> digitSum(7, 2) = 3. n in base 3 = [2, 1] -> digitSum(7, 3) = 3. n in base 4 = [1, 3] -> digitSum(7, 4) = 4. n in base 5 = [1, 2] -> digitSum(7, 5) = 3. n in base 6 = [1, 1] -> digitSum(7, 6) = 2. Base 6 has the smallest sum of the digits for n = 7 -> therefore a(7) = 6.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local F, t,d,bmin,s,r,b; F:= ifactors(n)[2]; d:= igcd(seq(t[2],t=F)); if d > 1 then return mul(t[1]^(t[2]/d),t=F) fi; F:= ifactors(n-1)[2]; d:= igcd(seq(t[2],t=F)); if d=1 then bmin:= n-1 else bmin:= mul(t[1]^(t[2]/d),t=F) fi; for s in numtheory:-divisors(n) do r:= n/s-1; F:= ifactors(s)[2]; d:= igcd(seq(t[2],t=F)); b:= mul(t[1]^(t[2]/d),t=F); if b < bmin and r = b^padic:-ordp(r,b) then bmin:= b fi od; bmin; end proc: map(f, [$1..100]); # Robert Israel, Dec 05 2019
-
Mathematica
a[n_] := Block[{b=1, r=n, t}, Do[t = Plus @@ IntegerDigits[n, i]; If[t < r, r=t; b=i], {i, 2, n-1}]; b]; Array[a, 75] (* Giovanni Resta, Nov 22 2019 *)
-
PARI
a(n)={my(best_b=1, best_dig_sum=n); if(n>1, for(b=2, n-1, dig_sum=sumdigits(n, b); if(best_dig_sum>dig_sum, best_dig_sum=dig_sum; best_b=b))); best_b};
Extensions
More terms from Giovanni Resta, Nov 22 2019
Comments