cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329822 The minimum weight of a Boolean function of algebraic degree at most n-3 whose support contains n linearly independent elements.

This page as a plain text file.
%I A329822 #16 Nov 24 2019 09:57:47
%S A329822 8,8,12,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,
%T A329822 52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,
%U A329822 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128
%N A329822 The minimum weight of a Boolean function of algebraic degree at most n-3 whose support contains n linearly independent elements.
%C A329822 Equivalently, a(n) is the minimum number for which there exists a subset S of GF(2)^n with a(n) elements which spans GF(2)^n as a vector space and Sum_{s in S} f(s) = 0 for all n-bit Boolean functions of algebraic degree at most 2.
%H A329822 Colin Barker, <a href="/A329822/b329822.txt">Table of n, a(n) for n = 3..1000</a>
%H A329822 C. Beierle, A. Biryukov and A. Udovenko, <a href="https://doi.org/10.1007/s12095-019-00415-0">On degree-d zero-sum sets of full rank</a>, Cryptography and Communications, November 2019.
%H A329822 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A329822 For n = 4 and n > 5, a(n) = 2n. As exceptions, a(3) = 8, a(5) = 12. Proven in Beierle, Biryukov, Udovenko, 2019.
%F A329822 From _Colin Barker_, Nov 22 2019: (Start)
%F A329822 G.f.: 2*x^3*(4 - 4*x + 2*x^2 - 2*x^3 + x^4) / (1 - x)^2.
%F A329822 a(n) = 2*a(n-1) - a(n-2) for n>7.
%F A329822 (End)
%F A329822 E.g.f.: 2*(-1 + exp(x))*x -2*x^2 + x^3/3 + x^5/60. - _Stefano Spezia_, Nov 22 2019
%t A329822 Drop[#, 3] &@ CoefficientList[Series[2 x^3*(4 - 4 x + 2 x^2 - 2 x^3 + x^4)/(1 - x)^2, {x, 0, 64}], x] (* _Michael De Vlieger_, Nov 22 2019 *)
%o A329822 (PARI) Vec(2*x^3*(4 - 4*x + 2*x^2 - 2*x^3 + x^4) / (1 - x)^2 + O(x^60)) \\ _Colin Barker_, Nov 22 2019
%Y A329822 A052928(n+2) gives the minimum weight of a Boolean function of algebraic degree at most n-2 whose support contains n linearly independent elements (n >= 2).
%K A329822 nonn,easy
%O A329822 3,1
%A A329822 _Christof Beierle_, Nov 22 2019