A329825 Beatty sequence for (3+sqrt(17))/4.
1, 3, 5, 7, 8, 10, 12, 14, 16, 17, 19, 21, 23, 24, 26, 28, 30, 32, 33, 35, 37, 39, 40, 42, 44, 46, 48, 49, 51, 53, 55, 56, 58, 60, 62, 64, 65, 67, 69, 71, 73, 74, 76, 78, 80, 81, 83, 85, 87, 89, 90, 92, 94, 96, 97, 99, 101, 103, 105, 106, 108, 110, 112, 113
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Beatty Sequence.
- Index entries for sequences related to Beatty sequences
Programs
-
Mathematica
t = 1/2; r = Simplify[(2 - t + Sqrt[t^2 + 4])/2]; s = Simplify[r/(r - 1)]; Table[Floor[r*n], {n, 1, 200}] (* A329825 *) Table[Floor[s*n], {n, 1, 200}] (* A329826 *)
-
PARI
a(n)=(sqrtint(17*n^2)+3*n)\4 \\ Charles R Greathouse IV, Jan 25 2022
Formula
a(n) = floor(r*n), where r = (3+sqrt(17))/4.
Comments