cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329834 Beatty sequence for (11+sqrt(73))/8.

This page as a plain text file.
%I A329834 #5 Feb 16 2025 08:33:58
%S A329834 2,4,7,9,12,14,17,19,21,24,26,29,31,34,36,39,41,43,46,48,51,53,56,58,
%T A329834 61,63,65,68,70,73,75,78,80,83,85,87,90,92,95,97,100,102,105,107,109,
%U A329834 112,114,117,119,122,124,127,129,131,134,136,139,141,144,146
%N A329834 Beatty sequence for (11+sqrt(73))/8.
%C A329834 Let r = (5+sqrt(73))/8. Then (floor(n*r)) and (floor(n*r + 3r/4)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.
%H A329834 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence.</a>
%H A329834 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%F A329834 a(n) = floor(n*s), where s = (11+sqrt(73))/8.
%t A329834 t = 3/4; r = Simplify[(2 - t + Sqrt[t^2 + 4])/2]; s = Simplify[r/(r - 1)];
%t A329834 Table[Floor[r*n], {n, 1, 200}]   (* A329833 *)
%t A329834 Table[Floor[s*n], {n, 1, 200}]   (* A329834 *)
%Y A329834 Cf. A329825, A329833 (complement).
%K A329834 nonn,easy
%O A329834 1,1
%A A329834 _Clark Kimberling_, Dec 31 2019