cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329835 Beatty sequence for (9+sqrt(101))/10.

This page as a plain text file.
%I A329835 #5 Feb 16 2025 08:33:58
%S A329835 1,3,5,7,9,11,13,15,17,19,20,22,24,26,28,30,32,34,36,38,40,41,43,45,
%T A329835 47,49,51,53,55,57,59,60,62,64,66,68,70,72,74,76,78,80,81,83,85,87,89,
%U A329835 91,93,95,97,99,100,102,104,106,108,110,112,114,116,118,120
%N A329835 Beatty sequence for (9+sqrt(101))/10.
%C A329835 Let r = (9+sqrt(101))/10. Then (floor(n*r)) and (floor(n*r + 3r/4)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.
%H A329835 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence.</a>
%H A329835 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%F A329835 a(n) = floor(n*r), where r = (9+sqrt(101))/10.
%t A329835 t = 1/5; r = Simplify[(2 - t + Sqrt[t^2 + 4])/2]; s = Simplify[r/(r - 1)];
%t A329835 Table[Floor[r*n], {n, 1, 200}]   (* A329835 *)
%t A329835 Table[Floor[s*n], {n, 1, 200}]   (* A329836 *)
%Y A329835 Cf. A329825, A329836 (complement).
%K A329835 nonn,easy
%O A329835 1,2
%A A329835 _Clark Kimberling_, Dec 31 2019