cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329837 Beatty sequence for (4+sqrt(26))/5.

This page as a plain text file.
%I A329837 #5 Feb 16 2025 08:33:58
%S A329837 1,3,5,7,9,10,12,14,16,18,20,21,23,25,27,29,30,32,34,36,38,40,41,43,
%T A329837 45,47,49,50,52,54,56,58,60,61,63,65,67,69,70,72,74,76,78,80,81,83,85,
%U A329837 87,89,90,92,94,96,98,100,101,103,105,107,109,111,112,114
%N A329837 Beatty sequence for (4+sqrt(26))/5.
%C A329837 Let r = (4+sqrt(26))/5. Then (floor(n*r)) and (floor(n*r + 2r/5)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.
%H A329837 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence.</a>
%H A329837 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%F A329837 a(n) = floor(n*r), where r = (4+sqrt(26))/5.
%t A329837 t = 2/5; r = Simplify[(2 - t + Sqrt[t^2 + 4])/2]; s = Simplify[r/(r - 1)];
%t A329837 Table[Floor[r*n], {n, 1, 200}]   (* A329837 *)
%t A329837 Table[Floor[s*n], {n, 1, 200}]   (* A329838 *)
%Y A329837 Cf. A329825, A329838 (complement).
%K A329837 nonn,easy
%O A329837 1,2
%A A329837 _Clark Kimberling_, Dec 31 2019