cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329840 Beatty sequence for (9+sqrt(41))/4.

This page as a plain text file.
%I A329840 #15 Feb 16 2025 08:33:58
%S A329840 3,7,11,15,19,23,26,30,34,38,42,46,50,53,57,61,65,69,73,77,80,84,88,
%T A329840 92,96,100,103,107,111,115,119,123,127,130,134,138,142,146,150,154,
%U A329840 157,161,165,169,173,177,180,184,188,192,196,200,204,207,211,215,219
%N A329840 Beatty sequence for (9+sqrt(41))/4.
%C A329840 Let r = (-1+sqrt(41))/4. Then (floor(n*r)) and (floor(n*r + 5r/2)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.
%H A329840 Michael De Vlieger, <a href="/A329840/b329840.txt">Table of n, a(n) for n = 1..10000</a>
%H A329840 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a>
%H A329840 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%F A329840 a(n) = floor(n*s), where s = (9+sqrt(41))/4. - corrected by _Michael De Vlieger_, Aug 27 2021
%t A329840 t = 5/2; r = Simplify[(2 - t + Sqrt[t^2 + 4])/2]; s = Simplify[r/(r - 1)];
%t A329840 Table[Floor[r*n], {n, 1, 200}]   (* A329839 *)
%t A329840 Table[Floor[s*n], {n, 1, 200}]   (* A329840 *)
%Y A329840 Cf. A329825, A329839 (complement).
%K A329840 nonn,easy
%O A329840 1,1
%A A329840 _Clark Kimberling_, Dec 31 2019