cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329841 Beatty sequence for (7+sqrt(109))/10.

This page as a plain text file.
%I A329841 #5 Feb 16 2025 08:33:58
%S A329841 1,3,5,6,8,10,12,13,15,17,19,20,22,24,26,27,29,31,33,34,36,38,40,41,
%T A329841 43,45,47,48,50,52,54,55,57,59,61,62,64,66,68,69,71,73,74,76,78,80,81,
%U A329841 83,85,87,88,90,92,94,95,97,99,101,102,104,106,108,109,111
%N A329841 Beatty sequence for (7+sqrt(109))/10.
%C A329841 Let r = (7+sqrt(109))/10. Then (floor(n*r)) and (floor(n*r + 3r/5)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.
%H A329841 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence.</a>
%H A329841 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%F A329841 a(n) = floor(n*r), where r = (7+sqrt(109))/10.
%t A329841 t = 3/5; r = Simplify[(2 - t + Sqrt[t^2 + 4])/2]; s = Simplify[r/(r - 1)];
%t A329841 Table[Floor[r*n], {n, 1, 200}]   (* A329841 *)
%t A329841 Table[Floor[s*n], {n, 1, 200}]   (* A329842 *)
%Y A329841 Cf. A329825, A329842 (complement).
%K A329841 nonn,easy
%O A329841 1,2
%A A329841 _Clark Kimberling_, Dec 31 2019