This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329843 #5 Feb 16 2025 08:33:58 %S A329843 1,2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,24,26,27,29,30,32,33,35,36, %T A329843 38,39,41,42,44,45,46,48,49,51,52,54,55,57,58,60,61,63,64,66,67,69,70, %U A329843 71,73,74,76,77,79,80,82,83,85,86,88,89,91,92,93,95,96 %N A329843 Beatty sequence for (1+sqrt(61))/6. %C A329843 Let r = (1+sqrt(61))/6. Then (floor(n*r)) and (floor(n*r + 5r/3)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825. %H A329843 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence.</a> %H A329843 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %F A329843 a(n) = floor(n*r), where r = (1+sqrt(61))/6. %t A329843 t = 5/3; r = Simplify[(2 - t + Sqrt[t^2 + 4])/2]; s = Simplify[r/(r - 1)]; %t A329843 Table[Floor[r*n], {n, 1, 200}] (* A329843 *) %t A329843 Table[Floor[s*n], {n, 1, 200}] (* A329844 *) %Y A329843 Cf. A329825, A329844 (complement). %K A329843 nonn,easy %O A329843 1,2 %A A329843 _Clark Kimberling_, Jan 02 2020