cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329844 Beatty sequence for (11+sqrt(61))/6.

This page as a plain text file.
%I A329844 #5 Feb 16 2025 08:33:58
%S A329844 3,6,9,12,15,18,21,25,28,31,34,37,40,43,47,50,53,56,59,62,65,68,72,75,
%T A329844 78,81,84,87,90,94,97,100,103,106,109,112,115,119,122,125,128,131,134,
%U A329844 137,141,144,147,150,153,156,159,163,166,169,172,175,178,181
%N A329844 Beatty sequence for (11+sqrt(61))/6.
%C A329844 Let r = (1+sqrt(61))/6. Then (floor(n*r)) and (floor(n*r + 5r/3)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825.
%H A329844 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence.</a>
%H A329844 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%F A329844 a(n) = floor(n*s), where s = (11+sqrt(61))/6.
%t A329844 t = 5/3; r = Simplify[(2 - t + Sqrt[t^2 + 4])/2]; s = Simplify[r/(r - 1)];
%t A329844 Table[Floor[r*n], {n, 1, 200}]   (* A329843 *)
%t A329844 Table[Floor[s*n], {n, 1, 200}]   (* A329844 *)
%Y A329844 Cf. A329825, A329843 (complement).
%K A329844 nonn,easy
%O A329844 1,1
%A A329844 _Clark Kimberling_, Jan 02 2020