This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329845 #5 Feb 16 2025 08:33:58 %S A329845 1,3,5,6,8,10,11,13,15,16,18,20,21,23,25,26,28,30,31,33,35,36,38,40, %T A329845 41,43,45,46,48,50,51,53,55,57,58,60,62,63,65,67,68,70,72,73,75,77,78, %U A329845 80,82,83,85,87,88,90,92,93,95,97,98,100,102,103,105,107 %N A329845 Beatty sequence for (3+sqrt(29))/5. %C A329845 Let r = (3+sqrt(29))/5. Then (floor(n*r)) and (floor(n*r + 4r/5)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825. %H A329845 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence.</a> %H A329845 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %F A329845 a(n) = floor(n*r), where r = (3+sqrt(29))/5. %t A329845 t = 4/5; r = Simplify[(2 - t + Sqrt[t^2 + 4])/2]; s = Simplify[r/(r - 1)]; %t A329845 Table[Floor[r*n], {n, 1, 200}] (* A329845 *) %t A329845 Table[Floor[s*n], {n, 1, 200}] (* A329846 *) %Y A329845 Cf. A329825, A329846 (complement). %K A329845 nonn,easy %O A329845 1,2 %A A329845 _Clark Kimberling_, Jan 02 2020