This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329846 #5 Feb 16 2025 08:33:58 %S A329846 2,4,7,9,12,14,17,19,22,24,27,29,32,34,37,39,42,44,47,49,52,54,56,59, %T A329846 61,64,66,69,71,74,76,79,81,84,86,89,91,94,96,99,101,104,106,108,111, %U A329846 113,116,118,121,123,126,128,131,133,136,138,141,143,146,148 %N A329846 Beatty sequence for (7+sqrt(29))/5. %C A329846 Let r = (3+sqrt(29))/5. Then (floor(n*r)) and (floor(n*r + 4r/5)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825. %H A329846 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence.</a> %H A329846 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %F A329846 a(n) = floor(n*s), where s = (7+sqrt(29))/5. %t A329846 t = 4/5; r = Simplify[(2 - t + Sqrt[t^2 + 4])/2]; s = Simplify[r/(r - 1)]; %t A329846 Table[Floor[r*n], {n, 1, 200}] (* A329845 *) %t A329846 Table[Floor[s*n], {n, 1, 200}] (* A329846 *) %Y A329846 Cf. A329825, A329845 (complement). %K A329846 nonn,easy %O A329846 1,1 %A A329846 _Clark Kimberling_, Jan 02 2020