This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329850 #14 Nov 23 2019 13:58:06 %S A329850 1,2,3,10,19,20,30,40,50,4,60,70,18,46,80,90,100,13,5,6,64,61,28,72, %T A329850 102,104,62,23,41,7,110,42,120,103,106,105,109,107,130,8,29,32,140, %U A329850 150,108,14,160,170,180,9,190,200,201,202,83,205,210,148,204,11,22 %N A329850 Lexicographically earliest sequence of distinct positive integers such that for any n > 0, f(n) * f(a(n)) = f(n * a(n)) where f(m) is the product of the digits of m. %C A329850 This sequence is a variant of A329804; both sequences share graphical features. %C A329850 This sequence is a self-inverse permutation of the positive integers. %C A329850 Keyword "look" added in view of the scatterplot of 110000 terms. - _N. J. A. Sloane_, Nov 23 2019 %H A329850 Rémy Sigrist, <a href="/A329850/b329850.txt">Table of n, a(n) for n = 1..21000</a> %H A329850 Rémy Sigrist, <a href="/A329850/a329850.png">Scatterplot of the first 110000 terms</a> %H A329850 Rémy Sigrist, <a href="/A329850/a329850_1.png">Scatterplot of (x, y) such that f(x)*f(y) = f(x*y) and x = 1..1000, y = 1..1000</a> %H A329850 Rémy Sigrist, <a href="/A329850/a329850.txt">C program for A329850</a> %H A329850 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A329850 a(a(n)) = n. %e A329850 The first terms, alongside f(n), f(a(n)) and f(n*a(n)), are: %e A329850 n a(n) f(n) f(a(n)) f(n*a(n)) %e A329850 -- ---- ---- ------- --------- %e A329850 1 1 1 1 1 %e A329850 2 2 2 2 4 %e A329850 3 3 3 3 9 %e A329850 4 10 4 0 0 %e A329850 5 19 5 9 45 %e A329850 6 20 6 0 0 %e A329850 7 30 7 0 0 %e A329850 8 40 8 0 0 %e A329850 9 50 9 0 0 %e A329850 10 4 0 4 0 %e A329850 11 60 1 0 0 %e A329850 12 70 2 0 0 %e A329850 13 18 3 8 24 %e A329850 14 46 4 24 96 %o A329850 (C) See Links section. %Y A329850 Cf. A007954, A329804. %K A329850 nonn,base,look %O A329850 1,2 %A A329850 _Rémy Sigrist_, Nov 22 2019