cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329854 Triangle read by rows: T(n,k) = ((n - k)*(n + k - 1) + 2)/2, 0 <= k <= n.

This page as a plain text file.
%I A329854 #18 Dec 07 2019 00:51:22
%S A329854 1,1,1,2,2,1,4,4,3,1,7,7,6,4,1,11,11,10,8,5,1,16,16,15,13,10,6,1,22,
%T A329854 22,21,19,16,12,7,1,29,29,28,26,23,19,14,8,1,37,37,36,34,31,27,22,16,
%U A329854 9,1,46,46,45,43,40,36,31,25,18,10,1,56,56,55,53,50,46,41,35,28,20,11,1
%N A329854 Triangle read by rows: T(n,k) = ((n - k)*(n + k - 1) + 2)/2, 0 <= k <= n.
%C A329854 This triangle equals A309559 with reversed rows and supplemented main diagonal (all terms are 1).
%C A329854 There are two lower triangular matrices M and N so that the matrix product M * N equals T (seen as a matrix).
%C A329854            / 1             \                 / 1             \
%C A329854            | 0 1           |                 | 1 1           |
%C A329854            | 0 1 1         |                 | 1 1 1         |
%C A329854   M(n,k) = | 0 1 2 1       |        N(n,k) = | 1 1 1 1       |
%C A329854            | 0 1 2 3 1     |                 | 1 1 1 1 1     |
%C A329854            | 0 1 2 3 4 1   |                 | 1 1 1 1 1 1   |
%C A329854            \ . . . . . . . /                 \ . . . . . . . /
%C A329854   The matrix product N * M equals the rascal triangle A077028 (seen as a matrix).
%F A329854 O.g.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = ((t^2+(1-t)^2) * (1-x*t) + x * t^2 * (1-t)) / ((1-t)^3 * (1-x*t)^2).
%F A329854 G.f. of column k: Sum_{n>=k} T(n,k) * t^n = t^k * (t^2/(1-t)^3 + 1/(1-t) + k*t/(1-t)^2) for k >= 0.
%F A329854 T(n,k) = 1 + T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) for 0 < k < n with initial values T(n,0) = (n*(n-1)+2)/2 and T(n,n) = 1 for n >= 0.
%F A329854 T(n,k) = (2 + T(n-1,k-1) * T(n-1,k+1)) / T(n-2,k) for 0 < k < n-1 with initial values given above and T(n,n-1) = n for n > 0.
%F A329854 Referring to the triangle M(n,k) (see comments), we get:
%F A329854   (1) Sum_{k=0..n} (k+1) * M(n,k) = A116731(n+1) for n >= 0;
%F A329854   (2) Sum_{k=1..n} k * M(n,k) = A081489(n) for n >= 1.
%F A329854 T(n,k) = T(n-1,k-1) + n-k for 0 < k <= n with initial values T(n,0) = (n*(n-1)+2)/2 for n >= 0.
%F A329854 T(n,k) = 2 * T(n-1,k-1) - T(n-2,k-2) for 1 < k <= n with initial values T(0,0) = 1 and T(n,0) = T(n,1) = (n*(n-1)+2)/2 for n > 0.
%e A329854 The triangle T(n,k) starts:
%e A329854 n \ k :   0    1    2    3    4    5    6    7    8    9   10   11
%e A329854 ==================================================================
%e A329854    0  :   1
%e A329854    1  :   1    1
%e A329854    2  :   2    2    1
%e A329854    3  :   4    4    3    1
%e A329854    4  :   7    7    6    4    1
%e A329854    5  :  11   11   10    8    5    1
%e A329854    6  :  16   16   15   13   10    6    1
%e A329854    7  :  22   22   21   19   16   12    7    1
%e A329854    8  :  29   29   28   26   23   19   14    8    1
%e A329854    9  :  37   37   36   34   31   27   22   16    9    1
%e A329854   10  :  46   46   45   43   40   36   31   25   18   10    1
%e A329854   11  :  56   56   55   53   50   46   41   35   28   20   11    1
%e A329854 etc.
%Y A329854 Row sums equal A116731(n+1).
%Y A329854 Row sums apart from column 0 equal A081489.
%Y A329854 Cf. A077028, A309559.
%K A329854 nonn,tabl
%O A329854 0,4
%A A329854 _Werner Schulte_, Nov 22 2019