This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329854 #18 Dec 07 2019 00:51:22 %S A329854 1,1,1,2,2,1,4,4,3,1,7,7,6,4,1,11,11,10,8,5,1,16,16,15,13,10,6,1,22, %T A329854 22,21,19,16,12,7,1,29,29,28,26,23,19,14,8,1,37,37,36,34,31,27,22,16, %U A329854 9,1,46,46,45,43,40,36,31,25,18,10,1,56,56,55,53,50,46,41,35,28,20,11,1 %N A329854 Triangle read by rows: T(n,k) = ((n - k)*(n + k - 1) + 2)/2, 0 <= k <= n. %C A329854 This triangle equals A309559 with reversed rows and supplemented main diagonal (all terms are 1). %C A329854 There are two lower triangular matrices M and N so that the matrix product M * N equals T (seen as a matrix). %C A329854 / 1 \ / 1 \ %C A329854 | 0 1 | | 1 1 | %C A329854 | 0 1 1 | | 1 1 1 | %C A329854 M(n,k) = | 0 1 2 1 | N(n,k) = | 1 1 1 1 | %C A329854 | 0 1 2 3 1 | | 1 1 1 1 1 | %C A329854 | 0 1 2 3 4 1 | | 1 1 1 1 1 1 | %C A329854 \ . . . . . . . / \ . . . . . . . / %C A329854 The matrix product N * M equals the rascal triangle A077028 (seen as a matrix). %F A329854 O.g.f.: Sum_{n>=0, k=0..n} T(n,k) * x^k * t^n = ((t^2+(1-t)^2) * (1-x*t) + x * t^2 * (1-t)) / ((1-t)^3 * (1-x*t)^2). %F A329854 G.f. of column k: Sum_{n>=k} T(n,k) * t^n = t^k * (t^2/(1-t)^3 + 1/(1-t) + k*t/(1-t)^2) for k >= 0. %F A329854 T(n,k) = 1 + T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) for 0 < k < n with initial values T(n,0) = (n*(n-1)+2)/2 and T(n,n) = 1 for n >= 0. %F A329854 T(n,k) = (2 + T(n-1,k-1) * T(n-1,k+1)) / T(n-2,k) for 0 < k < n-1 with initial values given above and T(n,n-1) = n for n > 0. %F A329854 Referring to the triangle M(n,k) (see comments), we get: %F A329854 (1) Sum_{k=0..n} (k+1) * M(n,k) = A116731(n+1) for n >= 0; %F A329854 (2) Sum_{k=1..n} k * M(n,k) = A081489(n) for n >= 1. %F A329854 T(n,k) = T(n-1,k-1) + n-k for 0 < k <= n with initial values T(n,0) = (n*(n-1)+2)/2 for n >= 0. %F A329854 T(n,k) = 2 * T(n-1,k-1) - T(n-2,k-2) for 1 < k <= n with initial values T(0,0) = 1 and T(n,0) = T(n,1) = (n*(n-1)+2)/2 for n > 0. %e A329854 The triangle T(n,k) starts: %e A329854 n \ k : 0 1 2 3 4 5 6 7 8 9 10 11 %e A329854 ================================================================== %e A329854 0 : 1 %e A329854 1 : 1 1 %e A329854 2 : 2 2 1 %e A329854 3 : 4 4 3 1 %e A329854 4 : 7 7 6 4 1 %e A329854 5 : 11 11 10 8 5 1 %e A329854 6 : 16 16 15 13 10 6 1 %e A329854 7 : 22 22 21 19 16 12 7 1 %e A329854 8 : 29 29 28 26 23 19 14 8 1 %e A329854 9 : 37 37 36 34 31 27 22 16 9 1 %e A329854 10 : 46 46 45 43 40 36 31 25 18 10 1 %e A329854 11 : 56 56 55 53 50 46 41 35 28 20 11 1 %e A329854 etc. %Y A329854 Row sums equal A116731(n+1). %Y A329854 Row sums apart from column 0 equal A081489. %Y A329854 Cf. A077028, A309559. %K A329854 nonn,tabl %O A329854 0,4 %A A329854 _Werner Schulte_, Nov 22 2019