This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329860 #8 Nov 24 2019 00:00:33 %S A329860 1,0,2,0,2,2,0,2,4,2,0,2,8,4,2,0,2,12,12,4,2,0,2,20,22,14,4,2,0,2,28, %T A329860 48,28,16,4,2,0,2,44,84,70,32,18,4,2,0,2,60,162,136,90,36,20,4,2,0,2, %U A329860 92,276,298,178,110,40,22,4,2,0,2,124,500,564,432,220,132,44,24,4,2 %N A329860 Triangle read by rows where T(n,k) is the number of binary words of length n with cuts-resistance k. %C A329860 For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word. %H A329860 Claude Lenormand, <a href="/A318921/a318921.pdf">Deux transformations sur les mots</a>, Preprint, 5 pages, Nov 17 2003. %F A329860 For positive indices, T(n,k) = 2 * A319421(n,k). %e A329860 Triangle begins: %e A329860 1 %e A329860 0 2 %e A329860 0 2 2 %e A329860 0 2 4 2 %e A329860 0 2 8 4 2 %e A329860 0 2 12 12 4 2 %e A329860 0 2 20 22 14 4 2 %e A329860 0 2 28 48 28 16 4 2 %e A329860 0 2 44 84 70 32 18 4 2 %e A329860 0 2 60 162 136 90 36 20 4 2 %e A329860 0 2 92 276 298 178 110 40 22 4 2 %e A329860 0 2 124 500 564 432 220 132 44 24 4 2 %e A329860 Row n = 4 counts the following words: %e A329860 0101 0010 0001 0000 %e A329860 1010 0011 0111 1111 %e A329860 0100 1000 %e A329860 0110 1110 %e A329860 1001 %e A329860 1011 %e A329860 1100 %e A329860 1101 %t A329860 degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; %t A329860 Table[Length[Select[Tuples[{0,1},n],degdep[#]==k&]],{n,0,10},{k,0,n}] %Y A329860 Column k = 2 appears to be 2 * A027383. %Y A329860 The version for runs-resistance is A319411 or A329767. %Y A329860 The cuts-resistance of the binary expansion of n is A319416(n). %Y A329860 The version for compositions is A329861. %Y A329860 Cf. A000975, A164707, A261983, A318928, A319420, A319421, A329738, A329865. %K A329860 nonn,tabl %O A329860 0,3 %A A329860 _Gus Wiseman_, Nov 23 2019