cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329860 Triangle read by rows where T(n,k) is the number of binary words of length n with cuts-resistance k.

This page as a plain text file.
%I A329860 #8 Nov 24 2019 00:00:33
%S A329860 1,0,2,0,2,2,0,2,4,2,0,2,8,4,2,0,2,12,12,4,2,0,2,20,22,14,4,2,0,2,28,
%T A329860 48,28,16,4,2,0,2,44,84,70,32,18,4,2,0,2,60,162,136,90,36,20,4,2,0,2,
%U A329860 92,276,298,178,110,40,22,4,2,0,2,124,500,564,432,220,132,44,24,4,2
%N A329860 Triangle read by rows where T(n,k) is the number of binary words of length n with cuts-resistance k.
%C A329860 For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word.
%H A329860 Claude Lenormand, <a href="/A318921/a318921.pdf">Deux transformations sur les mots</a>, Preprint, 5 pages, Nov 17 2003.
%F A329860 For positive indices, T(n,k) = 2 * A319421(n,k).
%e A329860 Triangle begins:
%e A329860    1
%e A329860    0   2
%e A329860    0   2   2
%e A329860    0   2   4   2
%e A329860    0   2   8   4   2
%e A329860    0   2  12  12   4   2
%e A329860    0   2  20  22  14   4   2
%e A329860    0   2  28  48  28  16   4   2
%e A329860    0   2  44  84  70  32  18   4   2
%e A329860    0   2  60 162 136  90  36  20   4   2
%e A329860    0   2  92 276 298 178 110  40  22   4   2
%e A329860    0   2 124 500 564 432 220 132  44  24   4   2
%e A329860 Row n = 4 counts the following words:
%e A329860   0101  0010  0001  0000
%e A329860   1010  0011  0111  1111
%e A329860         0100  1000
%e A329860         0110  1110
%e A329860         1001
%e A329860         1011
%e A329860         1100
%e A329860         1101
%t A329860 degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
%t A329860 Table[Length[Select[Tuples[{0,1},n],degdep[#]==k&]],{n,0,10},{k,0,n}]
%Y A329860 Column k = 2 appears to be 2 * A027383.
%Y A329860 The version for runs-resistance is A319411 or A329767.
%Y A329860 The cuts-resistance of the binary expansion of n is A319416(n).
%Y A329860 The version for compositions is A329861.
%Y A329860 Cf. A000975, A164707, A261983, A318928, A319420, A319421, A329738, A329865.
%K A329860 nonn,tabl
%O A329860 0,3
%A A329860 _Gus Wiseman_, Nov 23 2019