This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329861 #6 Nov 24 2019 09:59:45 %S A329861 1,0,1,0,1,1,0,3,0,1,0,4,3,0,1,0,7,6,2,0,1,0,14,9,6,2,0,1,0,23,22,10, %T A329861 6,2,0,1,0,39,47,22,10,7,2,0,1,0,71,88,52,24,10,8,2,0,1,0,124,179,101, %U A329861 59,26,11,9,2,0,1,0,214,354,220,112,71,28,12,10,2,0,1 %N A329861 Triangle read by rows where T(n,k) is the number of compositions of n with cuts-resistance k. %C A329861 A composition of n is a finite sequence of positive integers summing to n. %C A329861 For the operation of shortening all runs by 1, cuts-resistance is defined as the number of applications required to reach an empty word. %e A329861 Triangle begins: %e A329861 1 %e A329861 0 1 %e A329861 0 1 1 %e A329861 0 3 0 1 %e A329861 0 4 3 0 1 %e A329861 0 7 6 2 0 1 %e A329861 0 14 9 6 2 0 1 %e A329861 0 23 22 10 6 2 0 1 %e A329861 0 39 47 22 10 7 2 0 1 %e A329861 0 71 88 52 24 10 8 2 0 1 %e A329861 Row n = 6 counts the following compositions (empty columns not shown): %e A329861 (6) (33) (222) (11112) (111111) %e A329861 (15) (114) (1113) (21111) %e A329861 (24) (411) (3111) %e A329861 (42) (1122) (11121) %e A329861 (51) (1131) (11211) %e A329861 (123) (1221) (12111) %e A329861 (132) (1311) %e A329861 (141) (2112) %e A329861 (213) (2211) %e A329861 (231) %e A329861 (312) %e A329861 (321) %e A329861 (1212) %e A329861 (2121) %t A329861 degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; %t A329861 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],degdep[#]==k&]],{n,0,10},{k,0,n}] %Y A329861 Row sums are A000079. %Y A329861 Column k = 1 is A003242 (for n > 0). %Y A329861 Column k = 2 is A329863. %Y A329861 Row sums without the k = 1 column are A261983. %Y A329861 The version for runs-resistance is A329744. %Y A329861 The version for binary vectors is A329860. %Y A329861 The cuts-resistance of the binary expansion of n is A319416. %Y A329861 Cf. A175342, A240085, A319411, A319420, A319421, A329738, A329862, A329865. %K A329861 nonn,tabl %O A329861 0,8 %A A329861 _Gus Wiseman_, Nov 23 2019