This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329862 #5 Nov 24 2019 09:59:53 %S A329862 3,4,6,9,11,12,13,18,19,20,22,25,26,37,38,41,43,44,45,50,51,52,53,74, %T A329862 75,76,77,82,83,84,86,89,90,101,102,105,106,149,150,153,154,165,166, %U A329862 169,171,172,173,178,179,180,181,202,203,204,205,210,211,212,213 %N A329862 Positive integers whose binary expansion has cuts-resistance 2. %C A329862 For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word. %H A329862 Claude Lenormand, <a href="/A318921/a318921.pdf">Deux transformations sur les mots</a>, Preprint, 5 pages, Nov 17 2003. %e A329862 The sequence of terms together with their binary expansions begins: %e A329862 3: 11 %e A329862 4: 100 %e A329862 6: 110 %e A329862 9: 1001 %e A329862 11: 1011 %e A329862 12: 1100 %e A329862 13: 1101 %e A329862 18: 10010 %e A329862 19: 10011 %e A329862 20: 10100 %e A329862 22: 10110 %e A329862 25: 11001 %e A329862 26: 11010 %e A329862 37: 100101 %e A329862 38: 100110 %e A329862 41: 101001 %e A329862 43: 101011 %e A329862 44: 101100 %e A329862 45: 101101 %e A329862 50: 110010 %t A329862 degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; %t A329862 Select[Range[100],degdep[IntegerDigits[#,2]]==2&] %Y A329862 Positions of 2's in A319416. %Y A329862 Numbers whose binary expansion has cuts-resistance 1 are A000975. %Y A329862 Binary words with cuts-resistance 2 are conjectured to be A027383. %Y A329862 Compositions with cuts-resistance 2 are A329863. %Y A329862 Cuts-resistance of binary expansion without first digit is A319420. %Y A329862 Binary words counted by cuts-resistance are A319421 and A329860. %Y A329862 Compositions counted by cuts-resistance are A329861. %Y A329862 Cf. A107907, A114901, A164707, A318928, A319411, A329745, A329865, A329866. %K A329862 nonn %O A329862 1,1 %A A329862 _Gus Wiseman_, Nov 23 2019