This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329864 #8 Nov 24 2019 10:00:09 %S A329864 1,0,0,0,0,2,5,10,17,27,68,107,217,420,884,1761,3679,7469,15437,31396, %T A329864 64369 %N A329864 Number of compositions of n with the same runs-resistance as cuts-resistance. %C A329864 A composition of n is a finite sequence of positive integers summing to n. %C A329864 For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined to be the number of applications required to reach a singleton. %C A329864 For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word. %H A329864 Claude Lenormand, <a href="/A318921/a318921.pdf">Deux transformations sur les mots</a>, Preprint, 5 pages, Nov 17 2003. %e A329864 The a(5) = 2 through a(8) = 17 compositions: %e A329864 (1112) (1113) (1114) (1115) %e A329864 (2111) (1122) (1222) (1133) %e A329864 (2211) (2221) (3311) %e A329864 (3111) (4111) (5111) %e A329864 (11211) (11122) (11222) %e A329864 (11311) (11411) %e A329864 (21112) (12221) %e A329864 (22111) (21113) %e A329864 (111121) (22211) %e A329864 (121111) (31112) %e A329864 (111131) %e A329864 (111221) %e A329864 (112112) %e A329864 (112211) %e A329864 (122111) %e A329864 (131111) %e A329864 (211211) %e A329864 For example, the runs-resistance of (111221) is 3 because we have: (111221) -> (321) -> (111) -> (3), while the cuts-resistance is also 3 because we have: (111221) -> (112) -> (1) -> (), so (111221) is counted under a(8). %t A329864 runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1; %t A329864 degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; %t A329864 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==degdep[#]&]],{n,0,10}] %Y A329864 The version for binary expansion is A329865. %Y A329864 Compositions counted by runs-resistance are A329744. %Y A329864 Compositions counted by cuts-resistance are A329861. %Y A329864 Compositions with runs-resistance = cuts-resistance minus 1 are A329869. %Y A329864 Cf. A003242, A098504, A114901, A242882, A318928, A319411, A319416, A319420, A319421, A329867, A329868. %K A329864 nonn,more %O A329864 0,6 %A A329864 _Gus Wiseman_, Nov 23 2019