This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329865 #7 Nov 24 2019 10:00:18 %S A329865 0,8,12,14,17,24,27,28,35,36,39,47,49,51,54,57,61,70,73,78,80,99,122, %T A329865 130,156,175,184,189,190,198,204,207,208,215,216,226,228,235,243,244, %U A329865 245,261,271,283,295,304,313,321,322,336,352,367,375,378,379,380,386 %N A329865 Numbers whose binary expansion has the same runs-resistance as cuts-resistance. %C A329865 For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined to be the number of applications required to reach a singleton. %C A329865 For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word. %H A329865 Claude Lenormand, <a href="/A318921/a318921.pdf">Deux transformations sur les mots</a>, Preprint, 5 pages, Nov 17 2003. %e A329865 The sequence of terms together with their binary expansions begins: %e A329865 0: %e A329865 8: 1000 %e A329865 12: 1100 %e A329865 14: 1110 %e A329865 17: 10001 %e A329865 24: 11000 %e A329865 27: 11011 %e A329865 28: 11100 %e A329865 35: 100011 %e A329865 36: 100100 %e A329865 39: 100111 %e A329865 47: 101111 %e A329865 49: 110001 %e A329865 51: 110011 %e A329865 54: 110110 %e A329865 57: 111001 %e A329865 61: 111101 %e A329865 70: 1000110 %e A329865 73: 1001001 %e A329865 78: 1001110 %e A329865 80: 1010000 %e A329865 For example, 36 has runs-resistance 3 because we have (100100) -> (1212) -> (1111) -> (4), while the cuts-resistance is also 3 because we have (100100) -> (00) -> (0) -> (). %e A329865 Similarly, 57 has runs-resistance 3 because we have (111001) -> (321) -> (111) -> (3), while the cuts-resistance is also 3 because we have (111001) -> (110) -> (1) -> (). %t A329865 runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1; %t A329865 degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; %t A329865 Select[Range[0,100],#==0||runsres[IntegerDigits[#,2]]==degdep[IntegerDigits[#,2]]&] %Y A329865 Positions of 0's in A329867. %Y A329865 The version for runs-resistance equal to cuts-resistance minus 1 is A329866. %Y A329865 Compositions with runs-resistance equal to cuts-resistance are A329864. %Y A329865 Runs-resistance of binary expansion is A318928. %Y A329865 Cuts-resistance of binary expansion is A319416. %Y A329865 Compositions counted by runs-resistance are A329744. %Y A329865 Compositions counted by cuts-resistance are A329861. %Y A329865 Binary words counted by runs-resistance are A319411 and A329767. %Y A329865 Binary words counted by cuts-resistance are A319421 and A329860. %Y A329865 Cf. A000975, A003242, A107907, A164707, A319420, A329738, A329868. %K A329865 nonn %O A329865 1,2 %A A329865 _Gus Wiseman_, Nov 23 2019