This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329868 #8 Nov 24 2019 10:00:44 %S A329868 0,1,2,7,11,15,18,31,63,75,127,255,511,1023,1234,2047,4095,8191,9638, %T A329868 16383,32767,65535,131071,262143,524287,1048575,2097151,4194303, %U A329868 8388607 %N A329868 Sorted positions of first appearances in A329867 (difference between the runs-resistance and the cuts-resistance of binary expansion) of each element in the image. %C A329868 For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined to be the number of applications required to reach a singleton. %C A329868 For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word. %H A329868 Claude Lenormand, <a href="/A318921/a318921.pdf">Deux transformations sur les mots</a>, Preprint, 5 pages, Nov 17 2003. %e A329868 The sequence of terms together with their binary expansions begins: %e A329868 0: %e A329868 1: 1 %e A329868 2: 10 %e A329868 7: 111 %e A329868 11: 1011 %e A329868 15: 1111 %e A329868 18: 10010 %e A329868 31: 11111 %e A329868 63: 111111 %e A329868 75: 1001011 %e A329868 127: 1111111 %e A329868 255: 11111111 %e A329868 511: 111111111 %e A329868 1023: 1111111111 %e A329868 1234: 10011010010 %e A329868 2047: 11111111111 %e A329868 4095: 111111111111 %e A329868 8191: 1111111111111 %e A329868 9638: 10010110100110 %e A329868 16383: 11111111111111 %e A329868 32767: 111111111111111 %e A329868 65535: 1111111111111111 %t A329868 runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1; %t A329868 degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; %t A329868 das=Table[If[n==0,0,runsres[IntegerDigits[n,2]]-degdep[IntegerDigits[n,2]]],{n,0,1000000}]; %t A329868 Table[Position[das,i][[1,1]]-1,{i,First/@Gather[das]}] %Y A329868 Sorted positions of first appearances in A329867. %Y A329868 Compositions with runs-resistance equal to cuts-resistance are A329864. %Y A329868 Runs-resistance of binary expansion is A318928. %Y A329868 Cuts-resistance of binary expansion is A319416. %Y A329868 Compositions counted by runs-resistance are A329744. %Y A329868 Compositions counted by cuts-resistance are A329861. %Y A329868 Binary words counted by runs-resistance are A319411 and A329767. %Y A329868 Binary words counted by cuts-resistance are A319421 and A329860. %Y A329868 Cf. A000975, A003242, A107907, A164707, A329738, A329865, A329866. %K A329868 nonn,more %O A329868 1,3 %A A329868 _Gus Wiseman_, Nov 23 2019