cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318928 Runs-resistance of binary representation of n.

Original entry on oeis.org

1, 2, 1, 3, 2, 3, 1, 3, 3, 2, 4, 2, 4, 3, 1, 3, 3, 5, 4, 4, 2, 5, 4, 3, 4, 4, 3, 3, 4, 3, 1, 3, 3, 5, 3, 3, 5, 4, 3, 4, 5, 2, 4, 3, 4, 5, 4, 3, 3, 3, 2, 4, 4, 3, 3, 2, 3, 4, 3, 3, 4, 3, 1, 3, 3, 5, 3, 3, 5, 3, 4, 3, 3, 5, 6, 4, 5, 3, 3, 4, 5, 4, 4, 4, 2, 5, 4, 5, 5, 4, 5, 5, 4, 5, 4
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2018

Keywords

Comments

Following Lenormand (2003), we define the "runs-resistance" of a finite list L to be the number of times the RUNS transformation must be applied to L in order to reduce L to a list with a single element.
Here it is immaterial whether we read the binary representation of n from left to right or right to left.
The RUNS transformation must be applied at least once, in order to obtain a list, so a(n) >= 1.

Examples

			11 in binary is [1, 0, 1, 1],
which has runs of lengths [1, 1, 2],
which has runs of lengths [2, 1],
which has runs of lengths [1, 1],
which has a single run of length [2].
This took four steps, so a(11) = 4.
		

Crossrefs

See A319103 for an inverse, and A319417 and A319418 for records.
Ignoring the first digit gives A329870.
Cuts-resistance is A319416.
Compositions counted by runs-resistance are A329744.
Binary words counted by runs-resistance are A319411 and A329767.

Programs

  • Maple
    with(transforms);
    # compute Lenormand's "resistance" of a list
    resist:=proc(a) local ct,i,b;
    if whattype(a) <> list then ERROR("input must be a list"); fi:
    ct:=0; b:=a; for i from 1 to 100 do
    if nops(b)=1 then return(ct); fi;
    b:=RUNS(b); ct:=ct+1; od; end;
    a:=[1];
    for n from 2 to 100 do
    b:=convert(n,base,2);
    r:=resist(b);
    a:=[op(a),r];
    od:
  • Mathematica
    Table[If[n == 1, 1, Length[NestWhileList[Length/@Split[#] &, IntegerDigits[n, 2], Length[#] > 1 &]] - 1], {n, 50}] (* Gus Wiseman, Nov 25 2019 *)

Extensions

a(1) corrected by N. J. A. Sloane, Sep 20 2018

A319411 Triangle read by rows: T(n,k) = number of binary vectors of length n with runs-resistance k (1 <= k <= n).

Original entry on oeis.org

2, 2, 2, 2, 2, 4, 2, 4, 6, 4, 2, 2, 12, 12, 4, 2, 6, 30, 18, 8, 0, 2, 2, 44, 44, 32, 4, 0, 2, 6, 82, 76, 74, 16, 0, 0, 2, 4, 144, 138, 172, 52, 0, 0, 0, 2, 6, 258, 248, 350, 156, 4, 0, 0, 0, 2, 2, 426, 452, 734, 404, 28, 0, 0, 0, 0, 2, 10, 790, 752, 1500, 938, 104, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Sep 20 2018

Keywords

Comments

"Runs-resistance" is defined in A318928.
Row sums are 2,4,8,16,... (the binary vectors may begin with 0 or 1).
This is similar to A329767 but without the k = 0 column and with a different row n = 1. - Gus Wiseman, Nov 25 2019

Examples

			Triangle begins:
2,
2, 2,
2, 2, 4,
2, 4, 6, 4,
2, 2, 12, 12, 4,
2, 6, 30, 18, 8, 0,
2, 2, 44, 44, 32, 4, 0,
2, 6, 82, 76, 74, 16, 0, 0,
2, 4, 144, 138, 172, 52, 0, 0, 0,
2, 6, 258, 248, 350, 156, 4, 0, 0, 0,
2, 2, 426, 452, 734, 404, 28, 0, 0, 0, 0,
2, 10, 790, 752, 1500, 938, 104, 0, 0, 0, 0, 0,
...
Lenormand gives the first 20 rows.
The calculation of row 4 is as follows.
We may assume the first bit is a 0, and then double the answers.
vector / runs / steps to reach a single number:
0000 / 4 / 1
0001 / 31 -> 11 -> 2 / 3
0010 / 211 -> 12 -> 11 -> 2 / 4
0011 / 22 -> 2 / 2
0100 / 112 -> 21 -> 11 -> 2 / 4
0101 / 1111 -> 4 / 2
0110 / 121 -> 111 -> 3 / 3
0111 / 13 -> 11 -> 2 / 3
and we get 1 (once), 2 (twice), 3 (three times) and 4 (twice).
So row 4 is: 2,4,6,4.
		

Crossrefs

Row sums are A000079.
Column k = 2 is 2 * A032741 = A319410.
Column k = 3 is 2 * A329745 (because runs-resistance 2 for compositions corresponds to runs-resistance 3 for binary words).
The version for compositions is A329744.
The version for partitions is A329746.
The number of nonzero entries in row n > 0 is A319412(n).
The runs-resistance of the binary expansion of n is A318928.

Programs

  • Mathematica
    runsresist[q_]:=If[Length[q]==1,1,Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1];
    Table[Length[Select[Tuples[{0,1},n],runsresist[#]==k&]],{n,10},{k,n}] (* Gus Wiseman, Nov 25 2019 *)

A319420 Irregular triangle read by rows: row n lists the cuts-resistances of the 2^n binary vectors of length n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 3, 2, 1, 2, 2, 1, 2, 3, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 5, 4, 3, 3, 3, 2, 2, 3, 3, 2, 1, 2, 2, 2, 3, 4, 4, 3, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 3, 3, 4, 5
Offset: 0

Views

Author

N. J. A. Sloane, Sep 22 2018

Keywords

Comments

The cuts-resistance of a vector is defined in A319416. The 2^n vectors of length n are taken in lexicographic order.
Note that here the vectors can begin with either 0 or 1, whereas in A319416 only vectors beginning with 1 are considered (since there we are considering binary representations of numbers).
Conjecture: The row sums, halved, appear to match A189391.

Examples

			Triangle begins:
0,
1,1,
2,1,1,2,
3,2,1,2,2,1,2,3,
4,3,2,2,2,1,2,3,3,2,1,2,2,2,3,4,
5,4,3,3,3,2,2,3,3,2,1,2,2,2,3,4,4,3,2,2,2,1,2,3,3,2,2,2,3,3,3,4,5,
...
		

Crossrefs

Keeping the first digit gives A319416.
Positions of 1's are the terms > 1 of A061547 and A086893, all minus 1.
The version for runs-resistance is A329870.
Compositions counted by cuts-resistance are A329861.
Binary words counted by cuts-resistance are A319421 or A329860.

Programs

  • Mathematica
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Table[degdep[Rest[IntegerDigits[n,2]]],{n,0,50}] (* Gus Wiseman, Nov 25 2019 *)
Showing 1-3 of 3 results.