cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329873 a(n) is the number of distinct prime numbers whose binary digits appear in order but not necessarily as consecutive digits in the binary representation of n.

This page as a plain text file.
%I A329873 #14 Jan 26 2022 11:55:06
%S A329873 0,0,1,1,1,3,2,2,1,3,3,5,2,5,3,2,1,4,3,6,3,6,5,6,2,5,5,6,3,6,3,3,1,4,
%T A329873 4,7,3,9,6,7,3,8,6,9,5,8,6,8,2,6,5,7,5,8,6,8,3,6,6,9,3,8,4,3,1,4,4,8,
%U A329873 4,9,7,9,3,11,9,11,6,11,7,10,3,8,8,12,6
%N A329873 a(n) is the number of distinct prime numbers whose binary digits appear in order but not necessarily as consecutive digits in the binary representation of n.
%C A329873 This sequence is unbounded.
%H A329873 Rémy Sigrist, <a href="/A329873/b329873.txt">Table of n, a(n) for n = 0..16384</a>
%F A329873 A078826(n) <= a(n) <= A007306(n+1).
%F A329873 a(2*n) = a(n) + A036987(n) for any n > 0.
%F A329873 a(2^n) = 1 for any n > 0.
%e A329873 The first terms, alongside the binary representations of n and of the corresponding prime numbers, are:
%e A329873   n   a(n)  bin(n)  {bin(p)}
%e A329873   --  ----  ------  --------------------
%e A329873    0     0       0  {}
%e A329873    1     0       1  {}
%e A329873    2     1      10  {10}
%e A329873    3     1      11  {11}
%e A329873    4     1     100  {10}
%e A329873    5     3     101  {10, 11, 101}
%e A329873    6     2     110  {10, 11}
%e A329873    7     2     111  {11, 111}
%e A329873    8     1    1000  {10}
%e A329873    9     3    1001  {10, 11, 101}
%e A329873   10     3    1010  {10, 11, 101}
%e A329873   11     5    1011  {10, 11, 101, 111, 1011}
%e A329873   12     2    1100  {10, 11}
%p A329873 b:= proc(n) option remember; `if`(n=0, {0},
%p A329873       map(x-> [x, 2*x+r][], b(iquo(n, 2, 'r'))))
%p A329873     end:
%p A329873 a:= n-> nops(select(isprime, b(n))):
%p A329873 seq(a(n), n=0..84);  # _Alois P. Heinz_, Jan 26 2022
%o A329873 (PARI) a(n,base=2) = { my (b=digits(n,base), s=[0]); for (k=1, #b, s = setunion(s, apply(o -> base*o+b[k], s))); #select(isprime, s) }
%Y A329873 Cf. A007306, A036987, A078826, A303077.
%K A329873 nonn,look,base
%O A329873 0,6
%A A329873 _Rémy Sigrist_, Nov 23 2019