This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329874 #25 May 13 2022 10:43:21 %S A329874 1,2,3,3,10,16,4,21,104,218,5,36,328,3044,9608,6,55,752,14814,291968, %T A329874 1540944,7,78,1440,45960,2183400,96928992,882033440,8,105,2456,111010, %U A329874 9133760,1098209328,112282908928,1793359192848 %N A329874 Array read by antidiagonals: A(n,k) = number of digraphs on n unlabeled nodes, arbitrarily colored with k given colors (n >= 1, k >= 1). %C A329874 The coloring of nodes is unrestricted. There is no constraint that all of the k colors have to be used. Nodes with different colors are counted as distinct, nodes with the same color are not. For digraphs with a fixed color set see A329546. %F A329874 A(1,k) = k. %F A329874 A(2,k) = k*(2*k+1). %F A329874 A(n,1) = A000273(n). %F A329874 A(n,2) = A000595(n). %F A329874 A(n,4) = A353996(n+1). - _Brendan McKay_, May 13 2022 %F A329874 A(n,k) = Sum_{i=1..min(n,k)} binomial(k,i)*A329546(n,i). %e A329874 First six rows and columns: %e A329874 1 2 3 4 5 6 %e A329874 3 10 21 36 55 78 %e A329874 16 104 328 752 1440 2456 %e A329874 218 3044 14814 45960 111010 228588 %e A329874 9608 291968 2183400 9133760 27755016 68869824 %e A329874 1540944 96928992 1098209328 6154473664 23441457680 69924880288 %e A329874 ... %e A329874 n=4, k=3 with A329546: %e A329874 A(4,3) = 3*218 + 3*2608 + 6336 = 14814. %o A329874 (PARI) \\ here C(p) computes A328773 sequence value for given partition. %o A329874 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A329874 edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i], v[j]))) + sum(i=1, #v, v[i]-1)} %o A329874 C(p)={((i, v)->if(i>#p, 2^edges(v), my(s=0); forpart(q=p[i], s+=permcount(q)*self()(i+1, concat(v, Vec(q)))); s/p[i]!))(1, [])} %o A329874 \\ here mulp(v) computes the multiplicity of the given partition. (see A072811) %o A329874 mulp(v) = {my(p=(#v)!, k=1); for(i=2, #v, k=if(v[i]==v[i-1], k+1, p/=k!; 1)); p/k!} %o A329874 wC(p)=mulp(p)*C(p) %o A329874 A329546(n)={[vecsum(apply(wC, vecsort([Vecrev(p) | p<-partitions(n),#p==m], , 4))) | m<-[1..n]]} %o A329874 Row(n)=vector(6, k, binomial(k)[2..min(k,n)+1]*A329546(n)[1..min(k,n)]~) %o A329874 { for(n=0, 6, print(Row(n))) } %Y A329874 Cf. A000273 digraphs with one color, A000595 binary relations, A329546 digraphs with exactly k colors, A328773 digraphs with a given color scheme. %K A329874 nonn,tabl %O A329874 1,2 %A A329874 _Peter Dolland_, Nov 23 2019