This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329877 #7 Nov 23 2019 13:21:20 %S A329877 1,1,1,2,4,3,7,10,18,1,13,5,2,42,3,3,22,18,23,15,29,33,23,17,5,33,3, %T A329877 134,94,84,6,57,103,13,92,63,90,60,156,39,10,108,114,65,78,67,52,57, %U A329877 11,21,114,79,366,128,76,22,382,36,88,34,68,110,2,72,14,28 %N A329877 Lexicographically earliest sequence of positive integers such that for n > 1, the concatenation of a(n), a(n-1), ..., a(1), in binary, is a prime number. %C A329877 This sequence is a binary variant of A329876. %C A329877 For any n > 0, the binary concatenation of a(n+1) and A329875(n) gives A329875(n+1). %e A329877 The first terms, alongside their binary representations and the corresponding concatenations, are: %e A329877 n a(n) bin(a(n)) bin(A329875(n)) %e A329877 -- ---- --------- ----------------------- %e A329877 1 1 1 1 %e A329877 2 1 1 11 %e A329877 3 1 1 111 %e A329877 4 2 10 10111 %e A329877 5 4 100 10010111 %e A329877 6 3 11 1110010111 %e A329877 7 7 111 1111110010111 %e A329877 8 10 1010 10101111110010111 %e A329877 9 18 10010 1001010101111110010111 %e A329877 10 1 1 11001010101111110010111 %o A329877 (PARI) print1 (v=1); for (n=2, 69, s=(b=2)^#digits(v, b); for (k=1, oo, if (isprime(v+=s), print1 (", "k); break))) %Y A329877 See A329875 for the corresponding concatenations. %Y A329877 Cf. A329876. %K A329877 nonn,base %O A329877 1,4 %A A329877 _Rémy Sigrist_, Nov 23 2019