This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329886 #28 Mar 05 2021 21:47:03 %S A329886 1,2,6,4,30,12,36,8,210,60,180,24,900,72,216,16,2310,420,1260,120, %T A329886 6300,360,1080,48,44100,1800,5400,144,27000,432,1296,32,30030,4620, %U A329886 13860,840,69300,2520,7560,240,485100,12600,37800,720,189000,2160,6480,96,5336100,88200,264600,3600,1323000,10800,32400,288,9261000 %N A329886 Primorial inflation of Doudna-tree: a(0) = 1, a(1) = 2; for n > 1, if n is even, a(n) = A283980(a(n/2)), and if n is odd, then a(n) = 2*a((n-1)/2). %H A329886 Antti Karttunen, <a href="/A329886/b329886.txt">Table of n, a(n) for n = 0..8191</a> %H A329886 Michael De Vlieger, <a href="/A329886/a329886.png">Tree showing levels 0 <= j <= 5</a> %H A329886 Michael De Vlieger, <a href="/A329886/a329886_1.png">Tree showing levels 0 <= j <= 7</a> %F A329886 a(0) = 1, a(1) = 2; for n > 1, if n is even, a(n) = A283980(a(n/2)), and if n is odd, then a(n) = 2*a((n-1)/2). %F A329886 a(n) = A108951(A005940(1+n)). %F A329886 For n >= 1, a(n) = A329887(A054429(n)). %e A329886 This irregular table can be represented as a binary tree. Each child to the left is obtained by applying A283980 to the parent, and each child to the right is obtained by doubling the parent: %e A329886 1 %e A329886 | %e A329886 ...................2................... %e A329886 6 4 %e A329886 30......../ \........12 36......../ \........8 %e A329886 / \ / \ / \ / \ %e A329886 / \ / \ / \ / \ %e A329886 / \ / \ / \ / \ %e A329886 210 60 180 24 900 72 216 16 %e A329886 etc. %e A329886 A329887 is the mirror image of the same tree. See also A342000. %t A329886 Block[{a}, a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ@ n, (Times @@ Map[Prime[PrimePi@#1 + 1]^#2 & @@ # &, FactorInteger[#]] - Boole[# == 1])*2^IntegerExponent[#, 2] &[a[n/2]], 2 a[(n - 1)/2]]; Array[a, 57, 0]] %t A329886 (* or, via Doudna *) %t A329886 Map[Times @@ Flatten@ MapIndexed[ConstantArray[Prime[First[#2]], #1] &, Table[LengthWhile[#1, # >= j &], {j, #2}] & @@ {#, Max[#]} &@ Sort[Flatten[ConstantArray[PrimePi@#1, #2] & @@@ FactorInteger[#]], Greater]] &, Nest[Append[#1, Prime[1 + BitLength[#2] - DigitCount[#2, 2, 1]]*#1[[#2 - 2^Floor@ Log2@ #2 + 1]]] & @@ {#, Length@ #} &, {1}, 57] ] (* _Michael De Vlieger_, Mar 05 2021 *) %o A329886 (PARI) %o A329886 A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980 %o A329886 A329886(n) = if(n<2,1+n,if(!(n%2),A283980(A329886(n/2)),2*A329886(n\2))); %Y A329886 Permutation of A025487. %Y A329886 Cf. A005940, A054429, A108951, A283980, A329900, A342000. %Y A329886 Cf. also A283477, A322827, A329887, A337376/A337377. %K A329886 nonn,look %O A329886 0,2 %A A329886 _Antti Karttunen_, Dec 24 2019 %E A329886 Name amended by _Antti Karttunen_, Mar 05 2021