This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329899 #9 Dec 24 2019 17:30:51 %S A329899 1,1,2,2,4,6,8,12,6,16,4,24,30,32,36,48,60,64,72,12,96,30,8,120,128, %T A329899 144,180,192,210,216,240,256,288,360,384,420,432,36,480,512,24,576,60, %U A329899 16,720,768,840,864,900,960,1024,1080,1152,210,1260,1296,1440,1536,1680,1728,1800,1920,2048,2160,2304,2310,2520,2592,72 %N A329899 If A181815(n) is odd, a(n) = A064989(A025487(n)), otherwise a(n) = A025487(n)/2. %C A329899 If 2-adic and 3-adic valuations of A025487(n) are equal, then a(n) = A064989(A025487(n)), otherwise a(n) = A025487(n)/2. %C A329899 Only terms of A025487 occur, and each one of them occurs exactly twice. %H A329899 Antti Karttunen, <a href="/A329899/b329899.txt">Table of n, a(n) for n = 1..10000</a> %F A329899 If A181815(n) is odd, a(n) = A064989(A025487(n)), otherwise a(n) = A025487(n)/2. %F A329899 a(n) = A025487(A329904(n)). %o A329899 (PARI) %o A329899 A181815(n) = A329900(A025487(n)); %o A329899 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; %o A329899 A329899(n) = if(A181815(n)%2,A064989(A025487(n)),A025487(n)/2); %Y A329899 Cf. A025487, A064989, A181815, A329897, A329898, A329904. %K A329899 nonn %O A329899 1,3 %A A329899 _Antti Karttunen_, Dec 24 2019