This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329911 #17 Mar 15 2020 09:45:13 %S A329911 1,1,6,9366,56183135190,5355375592488768406230, %T A329911 22807137588023760967484928392369803926, %U A329911 9821625950779149908637519199878777711089567893389821437206 %N A329911 The number of rooted chains of reflexive matrices of order n. %C A329911 Also, the number of n X n distinct rooted reflexive fuzzy matrices. %C A329911 The number of chains in the power set of (n^2-n)-elements such that the first term of the chains is either an empty set or a set of (n^2-n)-elements. %C A329911 The number of chains in the collection of all reflexive matrices of order n such that the first term of the chains is either identity matrix or unit matrix. %H A329911 S. R. Kannan and Rajesh Kumar Mohapatra, <a href="https://arxiv.org/abs/1909.13678">Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques</a>, arXiv preprint arXiv:1909.13678 [math.GM], 2019. %H A329911 V. Murali, <a href="https://doi.org/10.1016/j.fss.2006.03.005">Combinatorics of counting finite fuzzy subsets</a>, Fuzzy Sets Syst., 157(17)(2006), 2403-2411. %H A329911 M. Tărnăuceanu, <a href="http://www.jstor.org/stable/2690450">The number of chains of subgroups of a finite elementary abelian p-group</a>, arXiv preprint arXiv:1506.08298 [math.GR], 2015. %F A329911 a(n) = A000629(n^2-n). %Y A329911 Cf. A000629, A038719, A007047, A328044, A330301, A330302, A330804, A331957. %K A329911 nonn %O A329911 0,3 %A A329911 S. R. Kannan, _Rajesh Kumar Mohapatra_, Feb 29 2020