cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329911 The number of rooted chains of reflexive matrices of order n.

This page as a plain text file.
%I A329911 #17 Mar 15 2020 09:45:13
%S A329911 1,1,6,9366,56183135190,5355375592488768406230,
%T A329911 22807137588023760967484928392369803926,
%U A329911 9821625950779149908637519199878777711089567893389821437206
%N A329911 The number of rooted chains of reflexive matrices of order n.
%C A329911 Also, the number of n X n distinct rooted reflexive fuzzy matrices.
%C A329911 The number of chains in the power set of (n^2-n)-elements such that the first term of the chains is either an empty set or a set of (n^2-n)-elements.
%C A329911 The number of chains in the collection of all reflexive matrices of order n such that the first term of the chains is either identity matrix or unit matrix.
%H A329911 S. R. Kannan and Rajesh Kumar Mohapatra, <a href="https://arxiv.org/abs/1909.13678">Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques</a>, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
%H A329911 V. Murali, <a href="https://doi.org/10.1016/j.fss.2006.03.005">Combinatorics of counting finite fuzzy subsets</a>, Fuzzy Sets Syst., 157(17)(2006), 2403-2411.
%H A329911 M. Tărnăuceanu, <a href="http://www.jstor.org/stable/2690450">The number of chains of subgroups of a finite elementary abelian p-group</a>, arXiv preprint arXiv:1506.08298 [math.GR], 2015.
%F A329911 a(n) = A000629(n^2-n).
%Y A329911 Cf. A000629, A038719, A007047, A328044, A330301, A330302, A330804, A331957.
%K A329911 nonn
%O A329911 0,3
%A A329911 S. R. Kannan, _Rajesh Kumar Mohapatra_, Feb 29 2020