This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329918 #22 Dec 18 2024 22:14:00 %S A329918 1,0,1,0,0,1,0,2,0,1,0,0,4,0,1,0,4,0,6,0,1,0,0,12,0,8,0,1,0,8,0,24,0, %T A329918 10,0,1,0,0,32,0,40,0,12,0,1,0,16,0,80,0,60,0,14,0,1,0,0,80,0,160,0, %U A329918 84,0,16,0,1,0,32,0,240,0,280,0,112,0,18,0,1 %N A329918 Coefficients of orthogonal polynomials related to the Jacobsthal numbers A152046, triangle read by rows, T(n, k) for 0 <= k <= n. %F A329918 p(n) = x*p(n-1) + 2*p(n-2) for n >= 3; p(0) = 1, p(1) = x, p(2) = x^2. %F A329918 T(n, k) = [x^k] p(n). %F A329918 T(n, k) = 2^((n-k)/2)*binomial((n+k)/2-1, (n-k)/2) if n+k is even otherwise 0. %e A329918 Triangle starts: %e A329918 [0] 1; %e A329918 [1] 0, 1; %e A329918 [2] 0, 0, 1; %e A329918 [3] 0, 2, 0, 1; %e A329918 [4] 0, 0, 4, 0, 1; %e A329918 [5] 0, 4, 0, 6, 0, 1; %e A329918 [6] 0, 0, 12, 0, 8, 0, 1; %e A329918 [7] 0, 8, 0, 24, 0, 10, 0, 1; %e A329918 [8] 0, 0, 32, 0, 40, 0, 12, 0, 1; %e A329918 [9] 0, 16, 0, 80, 0, 60, 0, 14, 0, 1; %e A329918 The first few polynomials: %e A329918 p(0,x) = 1; %e A329918 p(1,x) = x; %e A329918 p(2,x) = x^2; %e A329918 p(3,x) = 2*x + x^3; %e A329918 p(4,x) = 4*x^2 + x^4; %e A329918 p(5,x) = 4*x + 6*x^3 + x^5; %e A329918 p(6,x) = 12*x^2 + 8*x^4 + x^6; %p A329918 T := (n, k) -> `if`((n+k)::odd, 0, 2^((n-k)/2)*binomial((n+k)/2-1, (n-k)/2)): %p A329918 seq(seq(T(n, k), k=0..n), n=0..11); %o A329918 (Julia) %o A329918 using Nemo # Returns row n. %o A329918 function A329918(row) %o A329918 R, x = PolynomialRing(ZZ, "x") %o A329918 function p(n) %o A329918 n < 3 && return x^n %o A329918 x*p(n-1) + 2*p(n-2) %o A329918 end %o A329918 p = p(row) %o A329918 [coeff(p, k) for k in 0:row] %o A329918 end %o A329918 for row in 0:9 println(A329918(row)) end # prints triangle %Y A329918 Row sums are A001045 starting with 1, which is A152046. These are in signed form also the alternating row sums. Diagonal sums are aerated A133494. %Y A329918 Cf. A110509, A113953, A114192, A167431, A322942. %K A329918 nonn,tabl %O A329918 0,8 %A A329918 _Peter Luschny_, Nov 28 2019