cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329918 Coefficients of orthogonal polynomials related to the Jacobsthal numbers A152046, triangle read by rows, T(n, k) for 0 <= k <= n.

This page as a plain text file.
%I A329918 #22 Dec 18 2024 22:14:00
%S A329918 1,0,1,0,0,1,0,2,0,1,0,0,4,0,1,0,4,0,6,0,1,0,0,12,0,8,0,1,0,8,0,24,0,
%T A329918 10,0,1,0,0,32,0,40,0,12,0,1,0,16,0,80,0,60,0,14,0,1,0,0,80,0,160,0,
%U A329918 84,0,16,0,1,0,32,0,240,0,280,0,112,0,18,0,1
%N A329918 Coefficients of orthogonal polynomials related to the Jacobsthal numbers A152046, triangle read by rows, T(n, k) for 0 <= k <= n.
%F A329918 p(n) = x*p(n-1) + 2*p(n-2) for n >= 3; p(0) = 1, p(1) = x, p(2) = x^2.
%F A329918 T(n, k) = [x^k] p(n).
%F A329918 T(n, k) = 2^((n-k)/2)*binomial((n+k)/2-1, (n-k)/2) if n+k is even otherwise 0.
%e A329918 Triangle starts:
%e A329918   [0] 1;
%e A329918   [1] 0,  1;
%e A329918   [2] 0,  0,  1;
%e A329918   [3] 0,  2,  0,  1;
%e A329918   [4] 0,  0,  4,  0,  1;
%e A329918   [5] 0,  4,  0,  6,  0,  1;
%e A329918   [6] 0,  0, 12,  0,  8,  0,  1;
%e A329918   [7] 0,  8,  0, 24,  0, 10,  0,  1;
%e A329918   [8] 0,  0, 32,  0, 40,  0, 12,  0, 1;
%e A329918   [9] 0, 16,  0, 80,  0, 60,  0, 14, 0, 1;
%e A329918 The first few polynomials:
%e A329918   p(0,x) = 1;
%e A329918   p(1,x) = x;
%e A329918   p(2,x) = x^2;
%e A329918   p(3,x) = 2*x + x^3;
%e A329918   p(4,x) = 4*x^2 + x^4;
%e A329918   p(5,x) = 4*x + 6*x^3 + x^5;
%e A329918   p(6,x) = 12*x^2 + 8*x^4 + x^6;
%p A329918 T := (n, k) -> `if`((n+k)::odd, 0, 2^((n-k)/2)*binomial((n+k)/2-1, (n-k)/2)):
%p A329918 seq(seq(T(n, k), k=0..n), n=0..11);
%o A329918 (Julia)
%o A329918 using Nemo # Returns row n.
%o A329918 function A329918(row)
%o A329918     R, x = PolynomialRing(ZZ, "x")
%o A329918     function p(n)
%o A329918         n < 3 && return x^n
%o A329918         x*p(n-1) + 2*p(n-2)
%o A329918     end
%o A329918     p = p(row)
%o A329918     [coeff(p, k) for k in 0:row]
%o A329918 end
%o A329918 for row in 0:9 println(A329918(row)) end # prints triangle
%Y A329918 Row sums are A001045 starting with 1, which is A152046. These are in signed form also the alternating row sums. Diagonal sums are aerated A133494.
%Y A329918 Cf. A110509, A113953, A114192, A167431, A322942.
%K A329918 nonn,tabl
%O A329918 0,8
%A A329918 _Peter Luschny_, Nov 28 2019