This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329919 #23 Aug 21 2022 06:14:55 %S A329919 1,17,33,49,65,321,337,849,865,1633,1649,2673,6769,6785,8065,20353, %T A329919 20369,21905,46481,46497,48289,89249,154785,154801,156849,218289, %U A329919 480433,480449,482753,568769,1224129,1224145,1226705,1341393,2652113,3700689,3700705,3703521 %N A329919 a(n) is the total number of squares after n iterations of the "Square Multiscale" substitution. %C A329919 The substitution starts with a single square. Then that square is subdivided into a "ring" of 16 small squares surrounding a larger square as shown in the example. In subsequent iterations, the same subdivision is applied to the largest square(s) present in that iteration. %H A329919 Rémy Sigrist, <a href="/A329919/a329919.gp.txt">PARI program for A329919</a> %H A329919 Yotam Smilansky and Yaar Solomon, <a href="https://arxiv.org/abs/2003.11735">Multiscale Substitution Tilings</a>, arXiv:2003.11735 [math.DS], 2020. %H A329919 Tilings Encyclopedia, <a href="https://tilings.math.uni-bielefeld.de/substitution/square-multiscale/">Square Multiscale</a> %e A329919 The basic subdivision rule: %e A329919 ---------------- ---------------- %e A329919 | | | | | | | | %e A329919 | | ---------------- %e A329919 | | | | | | %e A329919 | | ---- ---- %e A329919 | | ------> | | | | %e A329919 | | ---- ---- %e A329919 | | | | | | %e A329919 | | ---------------- %e A329919 | | | | | | | | %e A329919 ---------------- ---------------- %e A329919 n = 1: The initial substitution subdivides the single square into 1 large and 16 small squares (as shown in the diagram above), so a(1) = 17. %e A329919 n = 2, 3, 4: The largest square present after the previous iterations is the center square, so 16 new squares are added in each of those iterations. Thus, a(2) = a(1) + 16 = 33, a(3) = a(2) + 16 = 49, a(4) = a(3) + 16 = 65. %e A329919 n = 5: This iteration subdivides the 16 outer squares (shown in the diagram above). 16^2 = 256, so a(5) = a(4) + 256 = 321. %o A329919 (PARI) See Links section. %Y A329919 Cf. A328074, A329927. %K A329919 nonn %O A329919 0,2 %A A329919 _Felix Fröhlich_, Nov 24 2019 %E A329919 More terms from _Rémy Sigrist_, Nov 24 2019