A329936 Binary hoax numbers: composite numbers k such that sum of bits of k equals the sum of bits of the distinct prime divisors of k.
4, 8, 9, 15, 16, 32, 45, 49, 50, 51, 55, 64, 75, 85, 100, 117, 126, 128, 135, 153, 159, 162, 171, 185, 190, 200, 205, 207, 215, 222, 225, 238, 246, 249, 252, 253, 256, 287, 303, 319, 324, 333, 338, 350, 369, 374, 378, 380, 400, 407, 438, 442, 444, 469, 471
Offset: 1
Examples
4 = 2^2 is in the sequence since the binary representation of 4 is 100 and 1 + 0 + 0 = 1, and the binary representation of 2 is 10 and 1 + 0 = 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) if isprime(n) then return false fi; convert(convert(n,base,2),`+`) = add(convert(convert(t,base,2),`+`),t=numtheory:-factorset(n)) end proc: select(filter, [$2..1000]); # Robert Israel, Nov 28 2019
-
Mathematica
binWt[n_] := Total @ IntegerDigits[n, 2]; binHoaxQ[n_] := CompositeQ[n] && Total[binWt /@ FactorInteger[n][[;; , 1]]] == binWt[n]; Select[Range[500], binHoaxQ]
-
PARI
is(n)= my(f=factor(n)[,1]); sum(i=1,#f, hammingweight(f[i]))==hammingweight(n) && !isprime(n) \\ Charles R Greathouse IV, Nov 28 2019
Comments