This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329939 #5 Feb 16 2025 08:33:58 %S A329939 2,4,6,8,10,12,14,17,19,21,23,25,27,29,31,34,36,38,40,42,44,46,49,51, %T A329939 53,55,57,59,61,63,66,68,70,72,74,76,78,81,83,85,87,89,91,93,95,98, %U A329939 100,102,104,106,108,110,113,115,117,119,121,123,125,127,130,132 %N A329939 Beatty sequence for cosh x, where csch x + sech x = 1 . %C A329939 Let x be the solution of csch x + sech x = 1. Then (floor(n*sinh x)) and (floor(n*cosh x)) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825. %H A329939 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence.</a> %H A329939 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %F A329939 a(n) = floor(n*cosh x), where x = 1.390148... is the constant in A329937; a(n) first differs from A329832(n) at n = 68. %t A329939 Solve[1/Sinh[x] + 1/Cosh[x] == 1, x] %t A329939 r = ArcSech[1/8 (4 - 4 Sqrt[2] - 9 Sqrt[5 + 4 Sqrt[2]] + (5 + 4 Sqrt[2])^(3/2))]; %t A329939 u = N[r, 250] %t A329939 v = RealDigits[u][[1]]; %t A329939 Table[Floor[n*Sinh[r]], {n, 1, 150}] (* A329938 *) %t A329939 Table[Floor[n*Cosh[r]], {n, 1, 150}] (* A329939 *) %Y A329939 Cf. A329825, A329832, A329937, A329938 (complement). %K A329939 nonn,easy %O A329939 1,1 %A A329939 _Clark Kimberling_, Jan 02 2020