This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329940 #21 Apr 13 2020 01:41:52 %S A329940 1,3,2,7,8,3,15,26,15,4,31,80,63,24,5,63,242,255,124,35,6,127,728, %T A329940 1023,624,215,48,7,255,2186,4095,3124,1295,342,63,8,511,6560,16383, %U A329940 15624,7775,2400,511,80,9,1023,19682,65535,78124,46655,16806,4095,728,99,10 %N A329940 Square array read by antidiagonals upwards: T(n,k) is the number of right unique relations between set A with n elements and set B with k elements. %C A329940 A relation R between set A with n elements and set B with k elements is a subset of the Cartesian product A x B. A relation R is right unique if (a, b1) in R and (a,b2) in R implies b1=b2. T(n,k) is the number of right unique relations and T(k,n) is the number of left unique relations: relation R is left unique if (a1,b) in R and (a2,b) in R implies a1=a2. %H A329940 Roy S. Freedman, <a href="https://arxiv.org/abs/1501.01914">Some New Results on Binary Relations</a>, arXiv:1501.01914 [cs.DM], 2015. %F A329940 T(n,k) = (k+1)^n - 1. %e A329940 T(n,k) begins: %e A329940 1, 2, 3, 4, 5, 6, 7, 8, ... %e A329940 3, 8, 15, 24, 35, 48, 63, 80, ... %e A329940 7, 26, 63, 124, 215, 342, 511, 728, ... %e A329940 15, 80, 255, 624, 1295, 2400, 4095, 6560, ... %e A329940 31, 242, 1023, 3124, 7775, 16806, 32767, 59048, ... %e A329940 63, 728, 4095, 15624, 46655, 117648, 262143, 531440, ... %e A329940 127, 2186, 16383, 78124, 279935, 823542, 2097151, 4782968, ... %e A329940 255, 6560, 65535, 390624, 1679615, 5764800, 16777215, 43046720, ... %p A329940 T:= (n, k)-> (k+1)^n-1: %p A329940 seq(seq(T(1+d-k, k), k=1..d), d=1..12); %t A329940 T[n_, k_] := (k + 1)^n - 1; Table[T[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Nov 25 2019 *) %o A329940 (MuPAD) T:=(n,k)->(k+1)^n-1: %Y A329940 Cf. A037205 (main diagonal). %Y A329940 Cf. A003992, A004248, A009998, A009999, A051128, A051129, A095884. %K A329940 nonn,tabl,easy %O A329940 1,2 %A A329940 _Roy S. Freedman_, Nov 24 2019