A329947 Integers k such that the radical of the cumulative product of k^k/k! equals its predecessor.
1, 12, 30, 36, 40, 60, 70, 72, 96, 108, 112, 126, 150, 175, 180, 192, 198, 210, 224, 240, 270, 280, 306, 312, 324, 330, 336, 350, 351, 352, 378, 384, 396, 399, 400, 408, 418, 420, 432, 440, 441, 442, 448, 455, 456, 462, 475, 490, 494, 520, 539, 540, 546, 560
Offset: 1
Keywords
Examples
Consider the rows 11 and 12 of Pascal's triangle. P11 = [1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1]. P12 = [1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1]. lcm(P11) = 2310 and radical(2310) = 2310. lcm(P12) = 27720 and radical(27720) = 2310. Since radical(lcm(P11)) = radical(lcm(P12)) 12 is in this sequence. Also: 1 is in this sequence because radical(lcm(P0)) = radical(lcm([1])) = radical(1) = 1 = radical(lcm([1, 1])) = radical(lcm(P1)).
Programs
-
Maple
h := n -> mul(k^k/factorial(k), k=0..n): rad := n -> mul(k, k = numtheory[factorset](n)): g := proc(n) option remember; rad(h(n)) end: isA329947 := n -> g(n) = g(n-1): select(isA329947, [$1..560]);
-
Mathematica
h[n_] := Product[k^k/k!, {k, 1, n}]; rad[n_] := Times @@ FactorInteger[n][[All, 1]]; g[n_] := g[n] = rad[h[n]]; isA329947[n_] := g[n] == g[n-1]; Select[Range[560], isA329947] (* Jean-François Alcover, Feb 28 2024, after Maple code *)
Comments