A345665 Ceiling of circumradius of quadrilateral with consecutive prime sides configured as a cyclic quadrilateral.
4, 6, 7, 9, 11, 13, 16, 19, 22, 25, 28, 30, 33, 36, 40, 43, 46, 49, 52, 55, 58, 62, 66, 70, 73, 75, 77, 81, 86, 91, 95, 99, 102, 106, 110, 113, 117, 121, 124, 129, 132, 135, 138, 142, 147, 153, 158, 162, 165, 167, 171, 175, 179, 184, 188
Offset: 1
Keywords
Examples
a(2)=6 because a cyclic quadrilateral with sides (3,5,7,11) has circumradius = 5.56365...
Links
- Eric Weisstein's World of Mathematics, Cyclic Quadrilateral.
- Wikipedia, Cyclic quadrilateral.
- Wikipedia, Prime triplet.
Programs
-
Mathematica
lst = {}; Do[{a, b, c, d}={Prime[n], Prime[n+1], Prime[n+2], Prime[n+3]}; s=(a+b+c+d)/2; R=Sqrt[(a*b+c*d)(a*c+b*d)(a*d+b*c)/((s-a)(s-b)(s-c)(s-d))]/4; AppendTo[lst, Ceiling@R], {n, 1, 100}]; lst
Formula
The circumradius R of a cyclic quadrilateral with sides a, b, c, d is given by the Parameshvara's circumradius formula R = sqrt((a*b+c*d)*(a*c+b*d)*(a*d+b*c)/((s-a)*(s-b)*(s-c)*(s-d)))/4 where s = (a+b+c+d)/2.
Comments