cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329952 Numbers k such that binomial(k,3) is divisible by 8.

This page as a plain text file.
%I A329952 #21 Jul 03 2022 16:16:28
%S A329952 0,1,2,8,10,16,17,18,24,26,32,33,34,40,42,48,49,50,56,58,64,65,66,72,
%T A329952 74,80,81,82,88,90,96,97,98,104,106,112,113,114,120,122,128,129,130,
%U A329952 136,138,144,145,146,152,154,160,161,162,168,170,176,177,178,184,186,192,193,194
%N A329952 Numbers k such that binomial(k,3) is divisible by 8.
%C A329952 These are possible sizes for 3-symmetric graphs.
%C A329952 The possible size of 2-symmetric graphs is sequence A042948.
%C A329952 These numbers are 0, 1, 2, 8, and 10 modulo 16.
%H A329952 Colin Barker, <a href="/A329952/b329952.txt">Table of n, a(n) for n = 1..1000</a>
%H A329952 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).
%F A329952 G.f.: (6*x^4+2*x^3+6*x^2+x+1)*x^2/(x^6-x^5-x+1). - _Alois P. Heinz_, Nov 29 2019
%F A329952 a(n) = a(n-1) + a(n-5) - a(n-6) for n>6. - _Colin Barker_, Nov 29 2019
%e A329952 binomial(10, 3) = 120, which is divisible by 8. Thus 10 belongs to this sequence.
%t A329952 Select[Range[200],Mod[Floor[#(#-1)(#-2)/6],8]==0&] (* _Joshua Oliver_, Nov 26 2019 *)
%t A329952 LinearRecurrence[{1,0,0,0,1,-1},{0,1,2,8,10,16},80] (* _Harvey P. Dale_, Jul 03 2022 *)
%o A329952 (Python)
%o A329952 for n in range(200):
%o A329952     if (n*(n-1)*(n-2)//6)%8==0:
%o A329952         print(n, end=' ')
%o A329952 (PARI) for(k=0,194,my(j=binomial(k,3));if(!(j%8),print1(k,", "))) \\ _Hugo Pfoertner_, Nov 29 2019
%o A329952 (PARI) concat(0, Vec(x^2*(1 + x + 6*x^2 + 2*x^3 + 6*x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^70))) \\ _Colin Barker_, Nov 29 2019
%Y A329952 Cf. A042948.
%K A329952 nonn,easy
%O A329952 1,3
%A A329952 Sebastian Jeon and _Tanya Khovanova_, Nov 25 2019