This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329959 #34 Aug 28 2024 14:58:57 %S A329959 1,0,2,0,0,5,0,0,1,14,0,0,1,8,42,0,0,1,10,45,132,0,0,1,12,69,220,429, %T A329959 0,0,1,14,98,406,1001,1430,0,0,1,16,132,672,2184,4368,4862,0,0,1,18, %U A329959 171,1032,4152,11088,18564,16796,0,0,1,20,215,1500,7185,23904,54060,77520,58786 %N A329959 Binomial transform of a signed variant of triangle A050166. %C A329959 Row sums = A007317(n+1). %C A329959 Right border = A000108(n+1). %H A329959 Alois P. Heinz, <a href="/A329959/b329959.txt">Rows n = 0..140, flattened</a> %F A329959 T(n,k) = Sum_{j=k..n} C(n,j) * (-1)^(j+k) * A050166(j,k). - _Alois P. Heinz_, Nov 27 2019 %e A329959 The signed variant of A050166 is A050166(n,k) * (-1)^(n+k): %e A329959 1; %e A329959 -1, 2; %e A329959 1, -4, 5; %e A329959 -1, 6, -14, 14; %e A329959 1, -8, 27, -48, 42; %e A329959 ... %e A329959 Let the above triangle = S, and Pascal's triangle = P as an infinite lower triangular matrix. Then T = P * S gives: %e A329959 1; %e A329959 0, 2; %e A329959 0, 0, 5; %e A329959 0, 0, 1, 14; %e A329959 0, 0, 1, 8, 42; %e A329959 0, 0, 1, 10, 45, 132; %e A329959 ... %p A329959 S:= (n, k)-> (binomial(2*n, k)-binomial(2*n, k-2))*(-1)^(n+k): %p A329959 T:= (n, k)-> add(binomial(n, j)*S(j, k), j=k..n): %p A329959 seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Nov 27 2019 %t A329959 Table[Sum[(-1)^(k+j)*Binomial[n, j]*(Binomial[2*j, k] - Binomial[2*j, k-2]), {j, k, n}], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 06 2020 *) %o A329959 (PARI) T(n,k) = sum(j=k, n, (-1)^(k+j)*binomial(n,j)*(binomial(2*j,k) - binomial(2*j,k-2)) ); \\ _G. C. Greubel_, Jan 06 2020 %o A329959 (Magma) T:= func< n,k | &+[(-1)^(k+j)*Binomial(n,j)*(Binomial(2*j,k) - Binomial(2*j,k-2)): j in [k..n]] >; %o A329959 [T(n,k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Jan 06 2020 %o A329959 (Sage) [[sum((-1)^(k+j)*binomial(n,j)*(binomial(2*j,k) - binomial(2*j,k-2)) for j in (k..n)) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Jan 06 2020 %o A329959 (GAP) B:=Binomial;; Flat(List([0..10], n-> List([0..n], k-> Sum([k..n], j-> (-1)^(k+j)*B(n,j)*(B(2*j,k) - B(2*j,k-2)) )))); # _G. C. Greubel_, Jan 06 2020 %Y A329959 Cf. A000108, A007317, A007318, A050166. %K A329959 nonn,tabl %O A329959 0,3 %A A329959 _Gary W. Adamson_, Nov 25 2019 %E A329959 New offset and more terms from _Alois P. Heinz_, Nov 25 2019