cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A329959 Binomial transform of a signed variant of triangle A050166.

This page as a plain text file.
%I A329959 #34 Aug 28 2024 14:58:57
%S A329959 1,0,2,0,0,5,0,0,1,14,0,0,1,8,42,0,0,1,10,45,132,0,0,1,12,69,220,429,
%T A329959 0,0,1,14,98,406,1001,1430,0,0,1,16,132,672,2184,4368,4862,0,0,1,18,
%U A329959 171,1032,4152,11088,18564,16796,0,0,1,20,215,1500,7185,23904,54060,77520,58786
%N A329959 Binomial transform of a signed variant of triangle A050166.
%C A329959 Row sums = A007317(n+1).
%C A329959 Right border = A000108(n+1).
%H A329959 Alois P. Heinz, <a href="/A329959/b329959.txt">Rows n = 0..140, flattened</a>
%F A329959 T(n,k) = Sum_{j=k..n} C(n,j) * (-1)^(j+k) * A050166(j,k). - _Alois P. Heinz_, Nov 27 2019
%e A329959 The signed variant of A050166 is A050166(n,k) * (-1)^(n+k):
%e A329959    1;
%e A329959   -1,   2;
%e A329959    1,  -4,   5;
%e A329959   -1,   6, -14,  14;
%e A329959    1,  -8,  27, -48,  42;
%e A329959   ...
%e A329959 Let the above triangle = S, and Pascal's triangle = P as an infinite lower triangular matrix. Then T = P * S gives:
%e A329959   1;
%e A329959   0,   2;
%e A329959   0,   0,   5;
%e A329959   0,   0,   1,  14;
%e A329959   0,   0,   1,   8,  42;
%e A329959   0,   0,   1,  10,  45, 132;
%e A329959   ...
%p A329959 S:= (n, k)-> (binomial(2*n, k)-binomial(2*n, k-2))*(-1)^(n+k):
%p A329959 T:= (n, k)-> add(binomial(n, j)*S(j, k), j=k..n):
%p A329959 seq(seq(T(n, k), k=0..n), n=0..10);  # _Alois P. Heinz_, Nov 27 2019
%t A329959 Table[Sum[(-1)^(k+j)*Binomial[n, j]*(Binomial[2*j, k] - Binomial[2*j, k-2]), {j, k, n}], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 06 2020 *)
%o A329959 (PARI) T(n,k) = sum(j=k, n, (-1)^(k+j)*binomial(n,j)*(binomial(2*j,k) - binomial(2*j,k-2)) ); \\ _G. C. Greubel_, Jan 06 2020
%o A329959 (Magma) T:= func< n,k | &+[(-1)^(k+j)*Binomial(n,j)*(Binomial(2*j,k) - Binomial(2*j,k-2)): j in [k..n]] >;
%o A329959 [T(n,k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Jan 06 2020
%o A329959 (Sage) [[sum((-1)^(k+j)*binomial(n,j)*(binomial(2*j,k) - binomial(2*j,k-2)) for j in (k..n)) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Jan 06 2020
%o A329959 (GAP) B:=Binomial;; Flat(List([0..10], n-> List([0..n], k-> Sum([k..n], j-> (-1)^(k+j)*B(n,j)*(B(2*j,k) - B(2*j,k-2)) )))); # _G. C. Greubel_, Jan 06 2020
%Y A329959 Cf. A000108, A007317, A007318, A050166.
%K A329959 nonn,tabl
%O A329959 0,3
%A A329959 _Gary W. Adamson_, Nov 25 2019
%E A329959 New offset and more terms from _Alois P. Heinz_, Nov 25 2019