This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329973 #67 Jul 17 2020 22:54:44 %S A329973 5,3,3,7,3,3,3,7,3,5,23,67,3,7,7,13,5,5,7,5,5,67,3,3,37,17,43,5,13,3, %T A329973 7,127,3,19,5,17,53,3,3,43,5,19,23,3,3,101,17,3,41,37,13,17,7,7,37,3, %U A329973 59,23,31,257,7,47,31,5,7,11,3,67,3,3,43,23 %N A329973 Smallest prime p such that both 2*prime(n+1)+p and p*prime(n+1)+2 are primes. %C A329973 a(n)=3 if and only if prime(n+1) is in A106067. - _Robert Israel_, Jul 17 2020 %H A329973 Robert Israel, <a href="/A329973/b329973.txt">Table of n, a(n) for n = 1..10000</a> %p A329973 f:= proc(n) local pn,p; %p A329973 pn:= ithprime(n+1); %p A329973 p:= 1; %p A329973 do %p A329973 p:= nextprime(p); %p A329973 if isprime(2*pn+p) and isprime(p*pn+2) then return p fi %p A329973 od %p A329973 end proc: %p A329973 map(f, [$1..100]); # _Robert Israel_, Jul 17 2020 %t A329973 f[n_Integer/;n>1]:=Module[{p=3},While[Or[CompositeQ[2*Prime[n]+p],CompositeQ[p*Prime[n]+2]],p=NextPrime[p]];p];f/@Range[2,100] %o A329973 (PARI) a(n) = my(p=2,q=prime(n+1)); while(!isprime(2*q+p) || !isprime(p*q+2), p=nextprime(p+1)); p; \\ _Michel Marcus_, Jun 08 2020 %Y A329973 Cf. A000040, A065091, A073703, A106067. %K A329973 nonn %O A329973 1,1 %A A329973 _Ivan N. Ianakiev_, Jun 08 2020