This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329975 #13 Feb 16 2025 08:33:58 %S A329975 4,8,12,16,20,24,28,32,36,40,44,48,53,57,61,65,69,73,77,81,85,89,93, %T A329975 97,101,106,110,114,118,122,126,130,134,138,142,146,150,155,159,163, %U A329975 167,171,175,179,183,187,191,195,199,203,208,212,216,220,224,228,232 %N A329975 Beatty sequence for 1 + x + x^2, where x is the real solution of 1/x + 1/(1+x+x^2) = 1. %C A329975 Let x be the real solution of 1/x + 1/(1+x+x^2) = 1. Then (floor(n*x)) and (floor(n*(x^2 + x + 1))) are a pair of Beatty sequences; i.e., every positive integer is in exactly one of the sequences. See the Guide to related sequences at A329825. %H A329975 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence.</a> %H A329975 <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a> %F A329975 a(n) = floor(n*(1+x+x^2)), where x = 1.324717... is the constant in A060006. %t A329975 Solve[1/x + 1/(1 + x + x^2) == 1, x] %t A329975 u = 1/3 (27/2 - (3 Sqrt[69])/2)^(1/3) + (1/2 (9 + Sqrt[69]))^(1/3)/3^(2/3); %t A329975 u1 = N[u, 150] %t A329975 RealDigits[u1, 10][[1]] (* A060006 *) %t A329975 Table[Floor[n*u], {n, 1, 50}] (* A329974 *) %t A329975 Table[Floor[n*(1 + u + u^2)], {n, 1, 50}] (* A329975 *) %t A329975 Plot[1/x + 1/(1 + x + x^2) - 1, {x, -2, 2}] %Y A329975 Cf. A329825, A060006, A329974 (complement). %K A329975 nonn,easy %O A329975 1,1 %A A329975 _Clark Kimberling_, Jan 02 2020