A329976 Number of partitions p of n such that (number of numbers in p that have multiplicity 1) > (number of numbers in p having multiplicity > 1).
0, 1, 1, 2, 2, 3, 4, 6, 9, 14, 18, 27, 38, 50, 66, 89, 113, 145, 186, 234, 297, 374, 468, 585, 737, 912, 1140, 1407, 1758, 2153, 2668, 3254, 4007, 4855, 5946, 7170, 8705, 10451, 12626, 15068, 18125, 21551, 25766, 30546, 36365, 42958, 50976, 60062, 70987
Offset: 0
Examples
The partitions of 6 are 6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111. These have d > r: 6, 51, 42, 321 These have d = r: 411, 3222, 21111 These have d < r: 33, 222, 2211, 111111 Thus, a(6) = 4.
Crossrefs
Programs
-
Mathematica
z = 30; d[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == 1 &]]]; r[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] > 1 &]]]; Table[Count[IntegerPartitions[n], p_ /; d[p] > r[p]], {n, 0, z}]
Comments