This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A329982 #13 Nov 29 2019 12:35:32 %S A329982 0,1,0,4,-3,4,0,9,-8,9,-5,6,-5,9,0,16,-15,16,-12,13,-12,16,-7,8,-7,11, %T A329982 -10,11,-7,16,0,25,-24,25,-21,22,-21,25,-16,17,-16,20,-19,20,-16,25, %U A329982 -9,10,-9,13,-9,18,-17,18,-14,15,-14,18,-9,25,0,36,-35,36,-32 %N A329982 a(1) = 0, and for n > 0, a(n+1) = k^2 - a(n) where k is the number of terms equal to a(n) among the first n terms. %C A329982 In other words, for n > 0, a(n+1) = o(n)^2 - a(n) where o is the ordinal transform of the sequence. %H A329982 Rémy Sigrist, <a href="/A329982/b329982.txt">Table of n, a(n) for n = 1..10000</a> %H A329982 Rémy Sigrist, <a href="/A329982/a329982.png">Scatterplot of the first 2^20 terms</a> %e A329982 The first terms, alongside their ordinal transform, are: %e A329982 n a(n) o(n) %e A329982 -- ---- ---- %e A329982 1 0 1 %e A329982 2 1 1 %e A329982 3 0 2 %e A329982 4 4 1 %e A329982 5 -3 1 %e A329982 6 4 2 %e A329982 7 0 3 %e A329982 8 9 1 %e A329982 9 -8 1 %e A329982 10 9 2 %o A329982 (PARI) for (n=1, #(a=vector(65)), print1 (a[n]=if (n>1, sum(k=1, n-1, a[k]==a[n-1])^2-a[n-1])", ")) %Y A329982 See A329981 for similar sequences. %K A329982 sign,look %O A329982 1,4 %A A329982 _Rémy Sigrist_, Nov 26 2019