A329985 a(1) = 1 and for n > 0, a(n+1) = a(k) - a(n) where k is the number of terms equal to a(n) among the first n terms.
1, 0, 1, -1, 2, -1, 1, 0, 0, 1, -2, 3, -2, 2, -2, 3, -3, 4, -3, 3, -2, 1, 1, -2, 4, -4, 5, -4, 4, -3, 4, -5, 6, -5, 5, -5, 6, -6, 7, -6, 6, -5, 4, -2, 1, 0, -1, 2, -1, 0, 2, -3, 2, 0, -1, 3, -4, 5, -4, 3, -1, 0, 1, -1, 2, -3, 5, -6, 7, -7, 8, -7, 7, -6, 5, -3
Offset: 1
Examples
The first terms, alongside their ordinal transform, are: n a(n) o(n) -- ---- ---- 1 1 1 2 0 1 3 1 2 4 -1 1 5 2 1 6 -1 2 7 1 3 8 0 2 9 0 3 10 1 4
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..25000
- Rémy Sigrist, Density plot of the first 2^22 terms
- N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
Programs
-
Mathematica
A={1};For[n=2,n<=76,n++,A=Append[A,Part[A,Count[Table[Part[A,i],{i,1,n-1}],Part[A,n-1]]]-Part[A,n-1]]];A (* Joshua Oliver, Nov 26 2019 *) Nest[Append[#, #[[Count[#, #[[-1]] ] ]] - #[[-1]]] &, {1}, 75] (* Michael De Vlieger, Dec 01 2019 *)
-
PARI
for (n=1, #(a=vector(76)), print1 (a[n]=if (n==1, 1, a[sum(k=1, n-1, a[k]==a[n-1])]-a[n-1])", "))
Comments