A330001 Number of partitions p of n such that (number of numbers in p that have multiplicity 1) < (number of numbers in p having multiplicity > 1).
0, 0, 1, 1, 2, 1, 4, 2, 6, 6, 12, 13, 25, 28, 44, 54, 77, 93, 127, 155, 204, 247, 318, 390, 494, 610, 761, 937, 1172, 1442, 1783, 2194, 2693, 3292, 4028, 4917, 5946, 7221, 8700, 10490, 12584, 15106, 18004, 21523, 25537, 30399, 35945, 42635, 50219, 59382
Offset: 0
Examples
The partitions of 6 are 6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111. These have d > r: 6, 51, 42, 321 These have d = r: 411, 3222, 21111 These have d < r: 33, 222, 2211, 111111 Thus, a(6) = 4.
Programs
-
Mathematica
z = 30; d[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == 1 &]]]; r[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] > 1 &]]]; Table[Count[IntegerPartitions[n], p_ /; d[p] < r[p]], {n, 0, z}]
Comments