cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330001 Number of partitions p of n such that (number of numbers in p that have multiplicity 1) < (number of numbers in p having multiplicity > 1).

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 4, 2, 6, 6, 12, 13, 25, 28, 44, 54, 77, 93, 127, 155, 204, 247, 318, 390, 494, 610, 761, 937, 1172, 1442, 1783, 2194, 2693, 3292, 4028, 4917, 5946, 7221, 8700, 10490, 12584, 15106, 18004, 21523, 25537, 30399, 35945, 42635, 50219, 59382
Offset: 0

Views

Author

Clark Kimberling, Feb 03 2020

Keywords

Comments

For each partition of n, let
d = number of terms that are not repeated;
r = number of terms that are repeated.
a(n) is the number of partitions such that d < r.

Examples

			The partitions of 6 are 6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111.
These have d > r:  6, 51, 42, 321
These have d = r:  411, 3222, 21111
These have d < r:  33, 222, 2211, 111111
Thus, a(6) = 4.
		

Crossrefs

Programs

  • Mathematica
    z = 30; d[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] == 1 &]]];
    r[p_] := Length[DeleteDuplicates[Select[p, Count[p, #] > 1 &]]]; Table[Count[IntegerPartitions[n], p_ /; d[p] <  r[p]], {n, 0, z}]

Formula

a(n) + A241274(n) + A329976(n) = A000041(n) for n >= 0.