A330002 Beatty sequence for x, where 1/x + 1/(x+1)^2 = 1.
1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 76, 77, 78, 79, 81, 82, 83
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Beatty Sequence.
- Index entries for sequences related to Beatty sequences
Programs
-
Maple
A330002 := proc(n) local x; x := -2*cos(5*Pi/7) ; floor(n*x) ; end proc: # R. J. Mathar, Jan 11 2020
-
Mathematica
r = x /. FindRoot[1/x + 1/(x+1)^2 == 1, {x, 2, 10}, WorkingPrecision -> 120] RealDigits[r][[1]] (* A255249 *) Table[Floor[n*r], {n, 1, 250}] (* A330002 *) Table[Floor[n*(1+r)^2], {n, 1, 250}] (* A330003 *)
Formula
a(n) = floor(n*x), where x = 1.24697960371... is the constant in A255249.
Comments