This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330028 #8 Nov 28 2019 08:07:10 %S A330028 1,1,2,3,7,13,23,45,86,159,303,568,1069,2005,3769,7066,13251,24821, %T A330028 46482,86988,162758 %N A330028 Number of compositions of n with cuts-resistance <= 2. %C A330028 A composition of n is a finite sequence of positive integers summing to n. %C A330028 For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word. %e A330028 The a(0) = 1 through a(5) = 13 compositions: %e A330028 () (1) (2) (3) (4) (5) %e A330028 (1,1) (1,2) (1,3) (1,4) %e A330028 (2,1) (2,2) (2,3) %e A330028 (3,1) (3,2) %e A330028 (1,1,2) (4,1) %e A330028 (1,2,1) (1,1,3) %e A330028 (2,1,1) (1,2,2) %e A330028 (1,3,1) %e A330028 (2,1,2) %e A330028 (2,2,1) %e A330028 (3,1,1) %e A330028 (1,1,2,1) %e A330028 (1,2,1,1) %t A330028 degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; %t A330028 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],degdep[#]<=2&]],{n,0,10}] %Y A330028 Sum of first three columns of A329861. %Y A330028 Compositions with cuts-resistance 1 are A003242. %Y A330028 Compositions with cuts-resistance 2 are A329863. %Y A330028 Compositions with runs-resistance 2 are A329745. %Y A330028 Numbers whose binary expansion has cuts-resistance 2 are A329862. %Y A330028 Binary words with cuts-resistance 2 are A027383. %Y A330028 Cuts-resistance of binary expansion is A319416. %Y A330028 Binary words counted by cuts-resistance are A319421 or A329860. %Y A330028 Cf. A000975, A003242, A032020, A114901, A240085, A261983, A319420, A329738, A329744, A329864. %K A330028 nonn,more %O A330028 0,3 %A A330028 _Gus Wiseman_, Nov 27 2019