This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330029 #10 Nov 29 2019 18:26:07 %S A330029 0,1,2,3,4,5,6,9,10,11,12,13,18,19,20,21,22,25,26,37,38,41,42,43,44, %T A330029 45,50,51,52,53,74,75,76,77,82,83,84,85,86,89,90,101,102,105,106,149, %U A330029 150,153,154,165,166,169,170,171,172,173,178,179,180,181,202,203 %N A330029 Numbers whose binary expansion has cuts-resistance <= 2. %C A330029 For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word. %C A330029 Also numbers whose binary expansion is a balanced word (see A027383 for definition). %C A330029 Also numbers whose binary expansion has all run-lengths 1 or 2 and whose sequence of run-lengths has no odd-length run of 1's sandwiched between two 2's. %e A330029 The sequence of terms together with their binary expansions begins: %e A330029 0: %e A330029 1: 1 %e A330029 2: 10 %e A330029 3: 11 %e A330029 4: 100 %e A330029 5: 101 %e A330029 6: 110 %e A330029 9: 1001 %e A330029 10: 1010 %e A330029 11: 1011 %e A330029 12: 1100 %e A330029 13: 1101 %e A330029 18: 10010 %e A330029 19: 10011 %e A330029 20: 10100 %e A330029 21: 10101 %e A330029 22: 10110 %e A330029 25: 11001 %e A330029 26: 11010 %e A330029 37: 100101 %e A330029 38: 100110 %t A330029 degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1; %t A330029 Select[Range[0,100],degdep[IntegerDigits[#,2]]<=2&] %Y A330029 Union of A000975 and A329862. %Y A330029 Balanced binary words are counted by A027383. %Y A330029 Compositions with cuts-resistance <= 2 are A330028. %Y A330029 Cuts-resistance of binary expansion is A319416. %Y A330029 Cf. A027383, A098504, A107907, A164707, A329860, A329861, A329863, A329865. %K A330029 nonn %O A330029 1,3 %A A330029 _Gus Wiseman_, Nov 27 2019