cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330032 The number of chains of strictly rooted upper triangular or lower triangular matrices of order n.

This page as a plain text file.
%I A330032 #23 Jul 03 2025 04:42:23
%S A330032 1,2,26,9366,204495126,460566381955706,162249649997008147763642,
%T A330032 12595124129900132067036747870669270,
%U A330032 288398561903310939256721956218813835167026180310,2510964964470962082968627390938311899485883615067802615950711482
%N A330032 The number of chains of strictly rooted upper triangular or lower triangular matrices of order n.
%C A330032 Also, the number of chains in the power set of (n^2-n)/2-elements such that the first term of the chains is either an empty set or a set of (n^2-n)/2-elements.
%C A330032 The number of rooted chains of 2-element subsets of {0,1, 2, ..., n} that contain no consecutive integers.
%C A330032 The number of distinct rooted reflexive symmetric fuzzy matrices of order n.
%C A330032 The number of chains in the set consisting of all n X n reflexive symmetric matrices such that the first term of the chains is either reflexive symmetric matrix or unit matrix.
%H A330032 Alois P. Heinz, <a href="/A330032/b330032.txt">Table of n, a(n) for n = 0..28</a>
%H A330032 S. R. Kannan and Rajesh Kumar Mohapatra, <a href="https://arxiv.org/abs/1909.13678">Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques</a>, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
%H A330032 R. B. Nelsen and H. Schmidt, Jr., <a href="http://www.jstor.org/stable/2690450">Chains in power sets</a>, Math. Mag., 64 (1) (1991), 23-31.
%H A330032 M. Tărnăuceanu, <a href="http://www.jstor.org/stable/2690450">The number of chains of subgroups of a finite elementary abelian p-group</a>, arXiv preprint arXiv:1506.08298 [math.GR], 2015.
%F A330032 a(n) = A000629((n^2-n)/2).
%Y A330032 Cf. A000629, A038719, A007047, A328044, A330301, A330302, A330804, A331957.
%K A330032 nonn
%O A330032 0,2
%A A330032 S. R. Kannan, _Rajesh Kumar Mohapatra_, Feb 29 2020
%E A330032 Missing term a(6) = 162249649997008147763642 inserted by _Georg Fischer_, Jul 15 2024