This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330036 #30 Apr 06 2020 12:31:37 %S A330036 1,1,2,2,3,2,3,3,4,3,2,3,4,3,4,4,5,4,3,4,3,2,3,4,5,4,3,3,5,4,5,5,6,5, %T A330036 4,5,3,3,4,5,4,3,2,3,4,3,4,5,6,5,4,4,4,3,3,4,6,5,4,4,6,5,6,6,7,6,5,6, %U A330036 4,4,5,6,4,3,3,4,4,4,5,6,5,4,3 %N A330036 The length of the largest run of 0's in the binary expansion of n + the length of the largest run of 1's in the binary expansion of n. %C A330036 All numbers appear in this sequence. The number of 1's in the n-th Mersenne number (A000225) is n and the number of 0's in the n-th Mersenne number is 0. 0+n=n. See formula. %H A330036 Robert Israel, <a href="/A330036/b330036.txt">Table of n, a(n) for n = 0..10000</a> %F A330036 a(n) = A087117(n) + A038374(n). %F A330036 a(A000225(n)) = n for n > 0. %e A330036 n [binary n ] A087117(n) + A038374(n) = a(n) %e A330036 0 [ 0 ] 1 + 0 = 1 %e A330036 1 [ 1 ] 0 + 1 = 1 %e A330036 2 [ 1 0 ] 1 + 1 = 2 %e A330036 3 [ 1 1 ] 0 + 2 = 2 %e A330036 4 [ 1 0 0 ] 2 + 1 = 3 %e A330036 5 [ 1 0 1 ] 1 + 1 = 2 %e A330036 6 [ 1 1 0 ] 1 + 2 = 3 %e A330036 7 [ 1 1 1 ] 0 + 3 = 3 %e A330036 8 [ 1 0 0 0 ] 3 + 1 = 4 %e A330036 9 [ 1 0 0 1 ] 2 + 1 = 3 %e A330036 10 [ 1 0 1 0 ] 1 + 1 = 2 %e A330036 11 [ 1 0 1 1 ] 1 + 2 = 3 %e A330036 12 [ 1 1 0 0 ] 2 + 2 = 4 %e A330036 13 [ 1 1 0 1 ] 1 + 2 = 3 %e A330036 14 [ 1 1 1 0 ] 1 + 3 = 4 %e A330036 15 [ 1 1 1 1 ] 0 + 4 = 4 %p A330036 f:= proc(n) local L; %p A330036 L:= convert(n,base,2); %p A330036 max(map(nops,[ListTools:-Split(`=`,L,1)]))+max(map(nops,[ListTools:-Split(`=`,L,0)])) %p A330036 end proc: %p A330036 map(f, [$0..100]); # _Robert Israel_, Apr 06 2020 %t A330036 Table[Sum[Max[Differences[Position[Flatten@{k,IntegerDigits[n,2],k},k]]],{k,0,1}]-2,{n,0,82}] %Y A330036 Cf. A000120, A000225, A007088, A023416, A038374, A087117. %K A330036 nonn,base %O A330036 0,3 %A A330036 _Joshua Oliver_, Nov 27 2019