This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330045 #21 Nov 20 2022 02:02:17 %S A330045 1,1,1,1,25,121,361,841,42001,365905,1819441,6660721,498971881, %T A330045 6278929801,43710250585,218205219961,21795091762081,358652470233121, %U A330045 3210080802962401,20298322381652065,2534333270094778681,51516840824285500441,563561785768079119561 %N A330045 Expansion of e.g.f. exp(x) / (1 - x^4). %H A330045 Seiichi Manyama, <a href="/A330045/b330045.txt">Table of n, a(n) for n = 0..450</a> %F A330045 G.f.: Sum_{k>=0} (4*k)! * x^(4*k) / (1 - x)^(4*k + 1). %F A330045 a(0) = a(1) = a(2) = a(3) = 1; a(n) = n*(n - 1)*(n - 2)*(n - 3)*a(n - 4) + 1. %F A330045 a(n) = Sum_{k=0..floor(n/4)} n! / (n - 4*k)!. %F A330045 a(n) ~ n! * (2*cos(Pi*n/2 - 1) + exp(1) + (-1)^n*exp(-1))/4. - _Vaclav Kotesovec_, Apr 18 2020 %t A330045 nmax = 22; CoefficientList[Series[Exp[x]/(1 - x^4), {x, 0, nmax}], x] Range[0, nmax]! %t A330045 Table[Sum[n!/(n - 4 k)!, {k, 0, Floor[n/4]}], {n, 0, 22}] %Y A330045 Cf. A000522, A087208, A100733, A330044, A334157. %Y A330045 Outer diagonal of A158777. %K A330045 nonn %O A330045 0,5 %A A330045 _Ilya Gutkovskiy_, Nov 28 2019